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INTRODUCTION

This Annual Report is the sixth of a series describing the results
of research conducted by the U.S. Geological Survey on behalf of the
National Aeronautics and Space Administration. This report, which covers
the period July 1, 1964 to July 1,1965, is in three volumes corresponding
to three main areas of research: Part A, Lunar and Planetary Investiga-
tions: Part B, Crater Investigations; and Part C, Cosmic Chemistry and
Petrology; and a map supplement. An additional volume presents in ab-
stract form summaries of the papers in Parts A, B, and C.

The major long-range objectives of the astrogeologic studies program
are to determine and map the stratigraphy and structure of the Moon's
crust, to work out from these the sequence.of events that led to the pre-
sent condition of the Moon's surface, and to determine the processes by
which these events took place. Work being carried out that leads toward
these objectives includes a program of lunar geologic mapping; studies on
the discrimination of geologic materials on the lunar surface by their
photometric, polarimetric, and infrared properties; field studies of
structures of impact, explosive, and volcanic origin; laboratory studies
on the behavior of rocks and minerals subjected to shock; and study of
the chemical, petrographic and physical properties‘of materials of
possible lunar origin and the development of special techniques for their
analysis.

Part B, Crater Investigations, contains the results of field and
laboratory studies of crater phenomenology, including volcanic, explosives,
and impact events. Investigations of naturally formed terrestrial craters
from three localities are: (1) the Henbury meteorite craters in Australia,
(2) the Sierra Madera structure in west Texas, and (3) the Flynn Creek
structure in east Tennessee. Another report discusses the distribution
of mercury in shocked and unshocked rocks at the Odessa meteorite craters
near Odessa, Texas, and another report discusses the possible origin of
pseudotachylite from Archean granite of the Vredefort dome in Africa.

Two experimental impact studies are reported: (1) a study of impact
craters formed in water-saturated sediments by impacting missiles, and

(2) a study of the fragmented material produced by two colliding spheres

v




of basalt. Another report discusses the geology of a part of a large body
of ,.anite in central Colorado that is being considered as a site for con-

ducting high-explosive cratering experiments in hard, polymineralic rocks.
One report discusses the geology of the Moses Rock diatreme in San

Juan County, Utah, and its similarity to rilles on the lunar surface.
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GEOLOGY OF THE SIERRA MADERA STRUCTURE, TEXAS:

PROGRESS REPORT

by H. G. Wilshire

This paper is a report of progress on thevdetailed mapping program,
begun by Shoemaker and Eggleton (1964), of the Sierra Madera crypto-
explosion structure in west Texas. Two months during early 1965 were
spent mapping in detail a small area of the Sierra Madera structure
and making a reconnaissance in the nearby Glass Mountains (fig. 1) for

rocks equivalent in age to those exposed at Sierra Madera.

Regional setting

Sierra Madera is near the northeast end of the Glass Mountains
(fig. 1) and at the southwest edge of the Edwards Plateau (Sellards,
1932, p. 28), which is made up of subhorizontal Cretaceous rocks. In
the Glass Mountains monocline 5000 to 7000 feet of Permian rocks are
exposed; these represent formations from the Neal Ranch (Ross, 1963)
at the base to Tessey at the top (table 1). The Permian rocks are un-
conformably overlain by Cretaceous rocks of the Comanchian Series and
dip 5° to 10° to the northwest; normal faults of post-Comanchian age
are widely spaced and strike approximately in the direction of dip of

the Permian rocks.
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Fig., 1.--Index map showing location of Sierra Madera,




3

wi youwy yeaN -
)
ot
wy ST1TH xouuaq wg dueojjom wg duesjjom wy dweojjom m.4
8
QW Yyouwy aynaq . X m
wg aqW yuel aeydog mamz N QK wi sssy 2
8094  IGK %EdJ UBATIYRNS 88H §89H s8aj )
Wy youwy IAsUUS ug m
Wy U TeAPAYIED wi pieuoany -
~JL pIRuQRAT 1 W pie
1qW aohcumlv&om 3 ~pIeuoay RIBUODT - m
Wi pacy =
P wd paoy Wy pIop m 8
wy &
P1ipT paoym £
e
aqW o1apIA H
57 AQH OTIPTA
weliTio IqW WeITTIo AqW WeriTIo
87 b s e e e e
ue3yydep ST ue3lfde) g
IqH Kessal 3
877 Kassal 87 fassay, 87 uejrden 8
A, .
o &
180 3308819 w e
e S W n !
e G
2880y uatH rM m o m
8§ juswaseq 1 m o
~—my o 8
(2] B2l
of & o
[l 9
muten |E 81 |
yBed ByauBWO) fm
s spaespy z
1
813qWal pue uojIrWIO] @ m mw
. 4]
7961 TIUEI) ¥ 13605 €961 'ssoy TH6T TBuIN L£61 TBuTY ocel “Tar 18 (B m
1761 ‘8Ima]

Aydea8y3za38 ayy jo sideouoco ZurBueyo Burjealsnyyy suoyioes SNOBOEI3I) pPUB URTWIS]

--SUTBIUNOK SBETDH 3Y3 U] SUOTIBAII0D ojydeadiieass

‘1 91qeL




The intensity of deformation at Sierra Madera is unique in an
area of otherwise little deformed rocks. Structure contours drawn on
the base of the Cretaceous Fredericksburg Group (King, 1935a, p. 240)
indicate that Sierra Madera is situated on a broad anticlinal nose ex-
tending east-northeast from the Glass Mountains; however, data from
drill holes at and near Sierra Madera (Eggleton and Shoemaker, 1961)
suggest that the local strong deformation at Sierra Madera has a
shallow root. Three domical structures in the Glass Mountains were
described by King (1930, p. 120); two are intruded by igneous plugs,
and none is very strongly deformed. A fourth domical structure, about
2 miles in diameter, was mapped by King (1930) in the Del Norte Moun-
tains (fig. 1). This structure also involves Permian and Cretaceous
rocks at the surface, but drilling indicates that, in contrast to
Sierra Madera, the structure is deep-rooted and involves strata at
least as old as the Ordovician; also, the deformation at the present

level of exposure is very much simpler than that at Sierra Madera.

Stratigraphy

Permian rocks of the northeastern Glass Mountains, including
formations from the upper Leonard to the Tessey (table 2), are domi-
nantly shallow-water marine dolomite and limestone with some interbedded
sandstone and conglomerate that were deposited on the southern shelf of
the Delaware basin (fig. 2). The rocks grade into deep-water, fine-

grained clastic rocks in the basin. The thickness and lithology of
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Fig. 2.,-=Major geologic features of the southern Permian basin,




Early Permian rocks (Wolfcampian) found in the Phillips No. 1 Elsinore
well at Sierra Madera (fig. 3; Young, 1952) indicate that the Delaware
and Val Verde basins were continuous (fig. 2) in Wolfcampian time
(Vertrees and others, 1959). The change, in Leonardian time, to a
shelf environment at Sierra Madera and in the northeastern Glass Moun-
tains was due partly to the filling of the Val Verde Basin and partly
to northward thrusting in the Marathon folded belt (Ross, 1962). The
uppermost Permian carbonate rocks (Tessey Limestone) of the northeast-
ern Glass Mountains grade toward the Delaware Basin into a saline sec-
tion correlative with the Rustler, Salado, and Tansill formations
(King, 1942, p. 658).

Major lateral changes in lithology may occur over short distances
in the shelf sediments. Such changes led King (1930) to separate the
Permian formations of the Glass Mountains into an eastern and western
facies. Further changes in a northeasterly direction were found by
comparing the lithologies of Permian formations described by King
(1930) with the lithologies in the Glass Mountains exposures nearest
Sierra Madera.

The general nature of the facies changes in the northeastern Glass
Mountains is shown in table 2. A few additional observations are note-
worthy. Although King (1930, p. 124) states that the conglomerate
member of the Leonard Formation is the most reliable marker horizon in
the central part of Sierra Madera, a thin conglomerate in the Word For-

mation was found to be lithologically similar to that in the Leonard




Formation. The northeasternmost exposures of the Word Formation are
distinguishable from the Hess Member of the Leonard Formation and the
Vidrio Member of the Word Formation by the abundance of fossils and by
the more calcareous nature of the Word Formation. The Tessey Limestone
contains abundant breccias throughout the section, not only in the
upper part as suggested by King (1930, p. 77). Massive and brecciated,
apparently unfossiliferous, limestones and intraformational limestone
conglomerates are common and locally dominant over dolomite in the
northeastern exposures of the Tessey; these limestones are lithologi-
cally indistinguishable from some unfossiliferous limestones of the
Cretaceous Edwards Limestone. Beds of fine-grained calcareous sand-
stone and dolomite breccia with a sandstone matrix, included in the
Tessey Limestone by King (1930), are lithologically similar to beds in
the underlying Gilliam Limestone. The Bissett Conglomerate, which oc-
curs between the Permian Tessey Limestone and the Cretaceous Basement
Sandstone in the north-central Glass Mountains, was considered by King
(1935b) to be Triassic, and lithologically similar conglomerate and
claystone at Sierra Madera were provisionally labelled Triassic by
Shoemaker and Eggleton (1964); but Adams (1935), among others, consid-
ered the Bissett to be Cretaceous. In the northeastern Glass Mountains
a thin conglomerate that is identical with parts of the Bissett Conglom-
erate was found between the Basement Sandstone and the Gilliam Lime-
stone; there is no apparent angular discordance between the Basement

Sandstone and the conglomerate and it appears likely that the




conglomerate is Cretaceous. At Sierra Madera, a similar conglomerate
was found at the top of the Basement Sandstone, another near the base,
and others within the Edwards Limestone; this casts considerable doubt
on the Triassic age designation of conglomerates at the bottom of the
Basement Sandstone. The tentative Triassic label (fig. 4) is retained,
however, pending palynologic study of the claystones.

The lithologies of formations so far distinguished at Sierra
Madera are compared with those of the same formations in the Glass Moun-
tains in table 2. The oldest formation mapped to date is the Word(?)
which is in fault contact with the Gilliam Limestone. Identification
of the Word is tentative and is based on a lithologic correlation with
the Glass Mountain rocks; however, the fossiliferous limestones at
Sierra Madera are interbedded(?) with dolomite breccias unlike any
lithologic units found in the Glass Mountains exposures of the Word.
The Vidrio Member of the Word Formation has not yet been recognized at
Sierra Madera. The Gilliam Limestone at Sierra Madera closely resembles
that in the Glass Mountains except for a greater abundance of sandstone
and a much commoner brecciation and calcite cementation of thin dolo-
mite beds at Sierra Madera. The Tessey Limestone at Sierra Madera is
the same in essential features as that in the Glass Mountains, although
basal sandstones are included for convenience in the Gilliam at Sierra
Madera. Subdivision of the Tessey into an upper breccia unit and a
lower massive to thinly laminated unit as proposed by Shoemaker and

Eggleton (1964) was found to be untenable in the area adjacent to that
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mapped by them; dolomite breccias were found throughout the section and
are subordinate in quantity to massive and thinly laminated units.
Limestones in the Tessey at Sierra Madera are distinguishable from un-
fossiliferous limestones of the Edwards Limestone only where the latter
occur with exposed Basement Sandstone. The Basement Sandstone and

2 Eakal o) 3
ass Mountaing,

Edwards Limestone have the same lithology as im &
except possibly for a greater abundance of breccias and conglomerates
at Sierra Madera.

The most important difference between the Permian section of the
Glass Mountains and Sierra Madera is the abundance of dolomite breccia
in the Gilliam Limestone and the Word Formation(?) at Sierra Madera.
That these breccias, aé well as those in the Tessey Limestone, are sedi-
mentary breccias (possibly formed by current action shortly after lithi-
fication) is indicated by lateral transition of thinly laminated units
into mildly brecciated rocks in which the individual pieces have been
only slightly displaced and then into completely mixed breccia in which
the individual laminated pieces are randomly oriented. It is note-
worthy that the fine-grained calcite cement is macroscopically similar
to the cement of the central breccia mass as distinguished by Eggleton
and Shoemaker (1961). Several interpretations of this feature are
possible, but the observations made to date suggest that at least as

early as Word(?) time deposition was in shallower water at Sierra Madera

than in the nearest Glass Mountains.
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Because of the severe deformation at Sierra Madera, reliable
thicknesses of formations are difficult to obtain. The Tessey Limestone
was estimated to be about 400 feet thick (Shoemaker and Eggleton, 1964)
in contrast to its thickness of 1000 feet in the northeastern Glass
Mountains. The Basement Sandstone has an irregular thickness, with a
maximum of about 50 feet, but is missing in places, probably by non-
deposition. This indicates the presence of local relief at Sierra
Madera during deposition of the Basement Sandstone. Estimates of thick-
nesses of the Gilliam Limestone and older formations must await further

mapping.

Structure

The Sierra Madera structure is nearly circular (fig. 3) and, as
presently recognized, has a diameter of about 9 miles. The principal
subdivisions of the structure, most of which are clearly revealed by
the topography (fig. 3), include a central breccia core about 1-1/2
miles in diameter (fig. 3, zone 1), an inner belt of severely deformed
Permian and Cretaceous rocks about 1 mile wide (fig. 3, zone 2), an
alluviated depression about 2-1/2 miles wide on the west side and 1/2
mile wide on the east side (fig. 3, zone 3), and an outer rim about
1/2 to 1-1/2 miles widesof generally mildly deformed Cretaceous rocks
(fig. 3, zone 4). Zones 3 and 4 have not been included before in the
Sierra Madera structure, but the topography of zone 4 is concentric
to the core and the inner belt of highly deformed rocks and so probably

formed during the same event or events that formed the central part of
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Fig. 3.--Topographic map of Sierra Madera showing principal
structural subdivisions, Circled numbers: 1, breccia core;
2, severely deformed Permian and Cretaceous; 3, alluvium-filled
depressions; 4, mildly deformed Cretaceous., Area labeled A is that
shown in figure 4, Drill holes shown by dots: 1, Phillips Elsinore

1; 2, Hunt Elsinore 48; 3, Thompson Elsinore 1,
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the structure; there are, furthermore, local areas within zone 4 of
intense deformation unlike that found in Cretaceous rocks elsewhere

in the region. The discontinuous nature of zone & (fig. 3) is due to
postdeformation erosion, and the outer limit of zone 2 is based on the
limits of exposure§ modifications of these boundaries are to be
expected as detailed mapping progresses.

Mapping to date has been confined to zone 2 and is shown in
generalized form in figure 4. Field mapping is being done on aerial
photographs at an approximate scale of 1:5000.

On the ridge north of that mapped by Shoemaker and Eggleton (1964),
the structural elements are essentially the same, but major steeply
dipping normal(?) and reverse faults trend nearly at right angles to
the transverse faults mapped by Shoemaker and Eggleton. The valley
separating the two ridges is probably structurally controlled, but the
nature of the structure has not yet been determined. All of the forma-
tions mapped on the north ridge are tightly folded and severely faulted
by normal(?) and reverse faults with slight transverse movement. Thrust
faults resulted in movement of the Tessey Limestone away from the
center of the structure and over the Cretaceous formations. Rocks
above and below the thrust faults are folded and faulted, but no transi-
tion of thrust faults into folds was observed on the north ridge, nor
is there any clear indication here that the amount of displacement on

thrust faults diminishes away from the center of the structure as noted
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by Shoemaker and Eggleton on the south ridge. There is no doubt,
however, that the general severity of deformation increases toward the
center of the structure.

The irregular outcrop pattern of the Basement Sandstone and
Edwards Limestone at the northeast edge of the mapped area (fig. 4)
is interpreted entirely as folds whose axes trend toward the center ot
the structure, but bedding attitudes are generally lacking and the
relief of that area is too low for observation of the three-dimensional
relations. However, the attitude of the contact between the Basement
Sandstone and Edwards Formation was measured in several places and
dips of as much as 80° were recorded.

Variation in the bedding attitudes of the Tessey Limestone
indicate severe internal deforﬁation, but there are too few mappable
subdivisions to locate the structures precisely. This formation is
generally massive or thick-bedded, and it is unlikely that many of
its contacts with the tightly folded Gilliam Limestone are unfaulted.
However, the lack of transverse movement on the northeast-trending
faults separating the Gilliam and Tessey (fig. 4) suggests that relative
movements along contacts not indicated as fault contacts is slight.

Internal structures in the Gilliam Limestone are more easily
located because the formation is composed of dolomite and sandstone
in thin, mappable beds. Except in places farthest from the center of
the structure, the Gilliam dolomites and sandstones are tightly folded

and are cut by numerous faults of every description. The major faults
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in the southwest part of the mapped area (fig. 4) are low-angle thrust
faults, some of which probably pass laterally into steeply dipping
reverse faults, and reverse faults whose traces are roughly concentric
with the core of the structure. Many of the small faults that trgnd
roughly toward the center of the structure are tear faults on the upper
plate of the thrust faults, and most of the other faults have formed
along minor fold axes of apparently random orientation; few fold

axes remain unfaulted.

Although zone 1, the central breccia core, has not yet been mapped,
new data from the Phillips No. 1 Elsinore well (fig. 3) have an
important bearing on earlier interpretations. Correlations by Addison
Young (see Eggleton and Shoemaker, 1961) of a middle Leonard anhydrite
zone between the Phillips well and other nearby wells (fig. 3)
indicates a structural relief of only about 500 feet at a depth of
about 3000 feet. Breccia was found in the Phillips well cuttings to
a depth of 1600 feet and possibly to 2800 feet (Eggleton and Shoemaker,
1961) and was identified, along with unbrecciated dolomite to a depth
of 4100 feet, as the Formation Leonard (Young, as cited by Eggleton and
Shoemaker, 1961, p. 153). The thickness of 4100 feet assigned to the
Leonard is nearly twice that in the Glass Mountains and is about 1500
feet thicker than that found in the nearby Hunt No. 48 Elsinore well
(fig. 3). The abnormal thickness of the Leonard Formation in the
Phillips well was considered by Young (1952) to be due to steep dips,

and by Eggleton and Shoemaker to be due to brecciation, both inter-
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pretations being somewhat compromised by the low structural relief
on the anhydrite member of the Leonard Formation.

Re-examination of fusulinids from the upper 3000 feet of the
Phillips well by C. A. Ross (written communication, 1965) revealed,
however, that the rocks in the top 1300 feet belong te the Word
Formation.® The Leonard Formation is, therefore, less than 150 feet
thicker in this well than in the Hunt well, and the total known thick-
ness of the Word Formation is comparable to its thickness in the Glass
Mountains. These data suggest that the subsurface structure from the
Leonard to older formations, is simple despite the high degree of
brecciation in the top 1600 feet of the section, and, combined with
the low structural relief on the anhydrite bed and downward decrease
in amount of brecciation, lend further support to the theory that

Sierra Madera is an impact structure.

1Identification of surface exposures as Leonard at the Phillips
well site was probably based on King's (1930) map which is now consid-
ered to be in error. Three reconnaissance traverses to the center of
the structure failed to reveal the conglomerate member of the Leonard.
Formation which was the basis of King's identification of Leonard in
the core of the structure. A specific outcrop of this member cited by
King (1930, p. 67) was found to be a conglomerate interbedded with
fusulinid limestones of probable Word age. Other fossiliferous lime-
stones lithologically similar to limestones of the Word Formation in
the Glass Mountains were found near the center of the breccia core and
about 300 feet higher than the Phillips well site.
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STRUCTURAL GEOLOGY OF THE LARGER HENBURY CRATERS'

by Daniel J. Milton

Introduction

The meteorite craters at Henbury, Northern Territory, Australia,
were mapped geologically during the winter of 1963 as part of a
program of investigations of meteorite impact features being conducted
by the U.S. Geological Survey on behalf of the National Aeronautics
and Space Administration. The Henbury craters have been known since
the reconnaissance investigation by A. R. Alderman (1932). Although
studies of the meteorites and of impact metamorphosed material
(Spencer, 1933; Chao, 1964; Taylor and Kolbe, 1964) and a magnetic
survey (Rayner, 1939) have been made, no detailed geologic examination
had previously been carried out.

Twelve craters (Alderman's '"ill-defined and doubtful' crater
No. 9 1is probably not a crater) occur within a quarter mile square
at 24°34'S, 133°08'E, about 7 miles west-southwest of the Henbury
homestead. During the first month of the field season, F. C. Michel
and the writer made plane-table geologic maps of two of the smaller

craters, No. 3 (Milton and Michel, 1965) and No. 10, and made a

1 The sections and units referred to in this paper are those on
the map of the Henbury crater field in the Map Supplement to this
report.
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pPlanetable topographic map at a scale of 1 inch to 30 feet of the main
group of large craters: the Main Crater (No. 7), the Water Crater

(No. 6) to the southeast and No. 8 of Alderman (1932) to the southwest.
The writer then spent the remaining two months mapping the geology

on this base (see map in Map Supplement).

The regional geography is well covered by R. A. Perry and others
(1962); the description of the Chandlers land system of their classi-
fication fits the vicinity of the craters well. Rainfall is about
8 inches, mostly in summer storms. Mulga grows along water courses,
but the plains around the craters and the crater walls have only a
sparse growth of needle bush and other shrubs. The floor of the Main
Crater is sparsely covered by saitbush. The wall of the Water Crater
has been breached and the upper part of a preimpact drainage system
has been captured so that water stands in the crater floor after rains.
Consequently, the largest trees in the vicinity grow in this crater,
among which whitewood is dominant. Cattle browse over the area, par-
ticularly when the Water Crater is the only nearby source of water.
Rabbits have discovered that the section of pediment gravel exposed
in the upper walls of the craters is the best place in the vicinity
for burrowing. Erosion of the craters probably has accelerated since

the native fauna was augmented by cattle and rabbits.




Geologic setting

The bedrock at the Henbury craters belongs to the Pertatataka
Formation of Late Proterozoic age (Ranford, Cook, and Wells, in press).
The craters are on thg south flank of a broad anticline. Resistant
sandstones predominate in the upper part of the Pertatataka Formation
and a series of ridges (the Bacon Range) lie at the south edge of the
crater field (fig. 2B). At the main group of craters, however, bedrock
consists of weak shales and siltstones with only a few thin beds of
indurated sandstone. As a consequence, the vicinity of these craters
lie in a "gibber plain,' a gently sloping pediment in which bedrock is
concealed by alluvial cover. Exposed bedding near the crater field
shows consistent attitudes with strikes close to east-west and dips to
the south of about 35°. Although a major thrust fault is exposed near
the crest of the Bacon Range, no faults and only a few small folds
were noted in reconnaissance nearer the crater field. Preimpact de-
formation may have been greater, however, in the incompetent beds near
the large craters and might be responsible for some of the unexplained
stratigraphic and structural anomalies. Nevertheless, with minor local
exceptions, the structures mapped may be assumed to have formed at the
time of impact from a simple homoclinal sequence.

Only a single nearby outcrop is on strike with the larger craters.
The stratigraphic column is therefore based entirely on interpretation

of the exposures in the crater walls, and some uncertainties remain
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because of original lenticularity of units, precrater deformation, or
incomplete decipherment of impact deformation. The units in the se-
quence from E through H closely resemble corresponding units in the se-
quence from A through D, but there are sufficient differences to rule
out repetition of section. Instead, a cyclic pattern of deposition
seems to be indicated. About 450 feet of section is exposed in the
larger craters, in which twelve major units and several minor beds have
becn mapped. As exposed in the crater walls, the shales and siltstones,
which make up the bulk of the section, crumble into chips or fragments
a few inches in size, and can easily be excavated with a shovel. The
sandier siltstones and sandstones are more indurated and break into
larger plates. Only in the south wall of the Water Crater are there
sandstone beds sufficiently indurated to break into blocks several
teet across.

The bedrock is covered by a varying thickness of pediment gravel
consisting of cobbles and smaller subrounded fragments of sandstone
and "gray billy" (strongly silicified rock) from the ridges to the
south, and rounded pebbles of more distant provenance, in a red silty
matrix. The thickness of the pediment gravel depends on-the underlying
material--it is thin or even absent over the more resistant sandstone
beds and may be 10 or 15 feet thick over shale. Shale units are com-
monly weathered as much as 10 or 15 feet below the pediment gravel and

may grade upward into a reddish clayey soil.
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Structures in the crater walls

The Henbury craters are not large--the larger end of the apparent-
ly double Main Crater (fig. 1) is less than 500 feet in diameter. Com-
plexities of structure, however, are well exhibited by displacements
of the dipping beds and of the essentially horizontal unconformity at
the base of the pediment gravel. Dissection of the crateré has reached
a nearly ideal point--the spurs between the gullies have retreated
only slightly from the original crater walls, while the gullies them-
selves present an opportunity to examine cross sections of the walls.
Much of the walls are covered by alluvium, but exposures are well
distributed to allow examination of structures up dip, down dip, and
on strike with the centers of impact.

Separation of the structures in the crater walls from those on
the crater rims is somewhat arbitrary but convenient for the purpose
of discussion. The greater amount of erosion in Meteor Crater, Arizona
(Shoemaker, 1963), and of fill at the Odessa craters, Texas (Evans,
1961), have restricted study of the walls to the upper portions near
the crater lip. Structures in previously mapped meteorite craters are
thus not closely comparable to those of the Henbury craters.

The structures in the walls are largely described in terms of
folds. These are not continuous folds like those formed by slow in-
tragranular movement in ordinary geologic environments but rather

mosaics formed by the reorientation of fracture-bounded blocks that
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Fig, 2A.-=North wall of Main Crater, Units A and B in anticline

crop out in pebble-~free areas along base of wall,

Fig,., 2B.--=South wall of Main Crater. Line of section E-E' follows 4
gully in center, Water Crater in left middle ground and Bacon Range on

skyline,
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are themselves little deformed. The fractures are usually so closely
spaced--commonly on the order of an inch or inches--that the appearance
of continuous smooth folds is produced.

Section A-A' is taken nearly parallel to the regional strike, so
that it should be comparable to a section through the wall of a crater
in flat-lying strata. The major structures are a synclinal fold that
brings up unit B at the base of the wall and a broad anticline in the
midslope. 1In detail the lower wall exhibits an imbricate structure,
with thin plates thrust outward short distances. The plate between
the two thrust surfaces shown on the section has nearly horizontal
bedding with a steeply upturnéd outer edge. This plate overrides the
next segment of the wall above, which again has flat-lying beds that
steepen outward at the synclinal bend shown on the map. The transi-
tion to the next segment of gentle dips is in this case not ; discon-
tinuity but a small sharp anticline which is too small to show on the
section.

Section B-B' is typical of the wall of the Main Crater. The domi-
nant feature is an anticline with a nearly horizontal axis running
along the base of the wall just above the present crater floor (fig. 2A).
The anticline is asymmetric--the dip of the craterward limb is little‘
different from the original dip of t%e beds, whereas the short outer

“The reference point for "inward" and "outward" is the center of

the crater, so that beds may dip outward into the crater wall, and so
on.
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limb is, on the whole, close to vertical, with the beds rotated more
than 120°, although it contains some tight subsidiary folds. Along
much of the anticline the inner 1limb is thrust over the crest. There
are culminations and depressions along the axis of the anticline and
broad open cross folds on the gently dipping limb which plunge radi-
ally inward. Higher on the crater wall are some very tight but
small-amplitude horizontal folds and some open radially plunging folds.

The topographic expression of the anticline is in part erosional
--units A and B are slightly more resistant than unit C--but in part
it may be an original feature of the postimpact topography. 1If so,
it would suggest a complex pattern of deformation. Either a simpler
wall was produced by the first compression and rarefaction waves and
was then deformed, or the acceleration did not decrease monotonically
outward from the point of burst. In connection with the latter pos-
sibility it may be noted that in certain experimental hypervelocity
impact craters a doughnut-shaped ring of material remains around the
lower part of the crater walls (H. J. Moore, oral communication). It
is perhaps also significant that certain lunar craters, for example
Ritter (see Ranger VIII, camera A photographs), have low ridges around
the base of the walls.

A different type of folded structure predominates on the opposite
wall of the Main Crater, where the original dip of the beds is outward
from the crater (fig. 2B). At the base of the wall tight folding about

more or less vertical axial planes indicates radial compression.
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Above (see section E-E'), the overall dip steepens to form a synclinal
structure, but superimposed on this are a series of small folds with
axial planes dipping shallowly into the crater (fig. 3). A minor
thrust fault parallel to the axial planes (fig. 3A) indicates that the

ple compressional folds but rather shear folds pro-
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uced by principal stresses acting parallel to the axial planes and
varying in intensity at right angles to them. It might be noted tﬁat,
as erosion proceeds into the wall, the type of fold apparent at any
level on the surface will alternate from synclinal to anticlinal.

The same effect can be seen in section D-D', where within an
apparently little deformed wall is a zone in which the rock is dis-
placed outward in an open fold with a smaller but much sharper fold
of the same sense in the upper part. The base of the main fold is inm
part a thrust surface on which the folded rocks moved outward over
unfolded rocks. The whole structure indicates a localized punchlike
stress into the wall.

The middle portion of section D-D' illustrates the deformation
in a wall between two craters. As might be expected, the rock is thrown
into a series of folds. The bedrock at the crest is at least 20 feet
higher than its preimpact elevation. The structure at depth is unknown;
a series of décollements along small thrusts seems likely.

A more complex wall structure is exhibited in section C-C'. The

ridge in the vicinity of this section is the remnant of a wall between

coalescing craters produced by the impact of objects in the centers of
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Fig. 3A.--Gully wall along line of section E-E'.
Unit E with unit F at extreme right. Small thrust

fault offsets prominent sandstone bed from below pick

point to one foot uphill from handle.

Fig. 3B.--Closeup of
folds at left in figure 3A.
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Fig. 4A,--Lowermost fault shown on section C-C'. Flat faces to
left are bedding in upper craterward plate., Knife blade is in plane

of bedding in overturned lower plate, with tops to left,

Fig, 4B.--Head of gully south of line of section C-C' near rim
crest, Gently dipping unit E has moved outward (to left) overriding
steeply dipping overturned beds below., Pediment gravel crops out

just below picture,
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Fig. 5A (above).-=-Wall of
gully opposite line of section
C-C'. "Thrust'" surface sepa-
rating unit E above and D below
follows steplike course from
lower right to upper left cor=-
ner, Flexures to both right and
left in top of lower block can
not be interpreted as due to drag;
they may have formed by the sudden
fall of the upper plate onto the

lower block.

Fig., 5B (left).=-=Detail
along "thrust' surface across
gully from line of section C-C',
Bedding in block to left of knife
is nearly at right angles to bedding
either above or below "thrust"

surface,
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the two ends of the oval Main Crater. Although some of the complexity is
probably due to the two interacting stress fields, for the most part

these cannot be resolved and the structure may be considered as resulting
simply from stresses acting in the plane of the section. A plate of rock
only slightly deformedvand retaining nearly its original attitude over-
lies a zone of much more deformed rock below and outward from it. To

this extent the section resembles section B-B', but in fact the sense

of deformation is exactly opposite. The fold in section B-B' formed by

a couple in which the upper part moved outward over the lower. In section
c-c! theAlower block is displaced outward relative to the upper plate
(fig. 4A). 1In the exposed portion of the lower block the dip has been
rotated from the original south dip to an overturned north dip. The
completion of the folds in the lower concealed portion is hypothetical.
The structural relations of this block are analogous to those of the upper
portion of the fold in section D-D', much magnified and with a break at
the top as well as at the bottom. The attitudes in the lower block are
maintained farther outward in the gully east of the line of section and
probably represent the same sense of displacement (fig. 5A). Indicators

of bedding tops are lacking in these beds, however, and the possibility
of isoclinal folding cannot be eliminated.

The actual surface of the underthrust is ;ot smooth but irregularly
stepped (fig. 5A), so that actual motion along it would be impossible.
Figure 5B shows a small block along the fault surface with its bedding
oriented nearly at right angles to that both below and above. It could
have reached its present orientation only while out of contact with the

adjacent blocks. Impact must have produced a momentary dilatation,
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during which structural blocks in the wall deformed and rotated more or
less independently of each other, and then the whole mass settled into
its present interlocked pattern. Such a mechanism of deformation is sup-
ported by the absence in all of the craters of slickensides or gouge re-
lated to the impact and the scarcity (except in ejecta) of fine-grained

breccia.

Structures in the crater rims

The structural style on the rim crests and rim flanks is as varied
as that in the walls. The distinction between debris and disturbed bed-
rock is much less clear-cut than was found at Meteor Crater by Shoemaker
(1963) and these have not been explicitly distinguished on the map. At-
titudes were, however, recorded wherever consistent orientations could be
found so that areas of bedrock units on the rims without attitude symbols
may be assumed to consist of small fragments with little or no common
orientation (this is not necessarily true of areas on the walls, where
colluvium hinders the measurement of attitudes). In these patches, how-
ever, the fragments are entirely or predominantly from a single bedrock
unit. The mixed ejecta unit consists mostly of intimately mixed fragments
of several bedrock units and in most places of pediment gravel, but in
some areas, particularly on the southeast rim crest of the Main Crater,
discrete monolithologic patches or bands can be distinguished, although
they are too small and discontinuous to be mapped.

The structural style of coherent ejecta on the rim is related to the

style in the walls below. In section E-E' the dips in the upper part of

the wall progressively steepen through the vertical into an overturned
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attitude (fig. 3A). This synclinal structure is continued on the rim,
where a flap consisting of three bedrock units in inverted sequence lies
on pediment gravel (fig. 6A). Where it is thinnest, only about a foot of
pediment gravel is exposed between the bedrock in place in the wall and
the bottom of the flap. The consistent attitudes in the flap might sug-
gest that it is merely the overturned limb éf a fold, but the greatly re-
duced thickness of the beds and the pinchout of unit F between units G
and E down the wall of the Water Crater show that this is not so. To ex-
plain the thinning it must be assumed that the flap consists of thin slices
that formed by strong shearing parallel to the bedding and active simul-
taneously with the outward rotation. Much of the minor structure in the
flap, such as the two plunging inverted synclines, is probably a reflect-
ion of the topography on which the flap fell. The extension of the flap
far down on the wall of the Water Crater raises problems concerning the
relative ages (which must be measured in fractions of a second) of the
Main and Water Craters. If the impacts of bolides in the Main and in

the Water Craters were simultaneous, the propagation of the shock wave
along the greater radius of the Main Crater may have introduced sufficient
delay to allow the flap to settle into the Water Crater. It is also pos-
sible that the gully at the northwest corner of the Water Crater developed
by erosional modification from another small crater or even a‘preimpact
depression. Exposures on the rim to the west suggest intermingling and
interpenetration of ejecta from the Main and Water Craters, but the pattern
is not clear.

The greatest thickness of throwout on the rim flank lies on a ridge

extending northeast from the Main Crater to beyond the map area. The axis
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Fig. 6A.-=Upper wall of Main Crater slightly west of line of sec-
tion E-E', Pediment gravel crops out in band running to right from
hammer with units F and G in place below and units G, F, and E in

overturned flap above,

Fig, 6B.==Southwest rim of Main Crater showing thin ejecta over
pediment gravel, Smooth areas are unit E with more resistant subunits

in blocky areas. Tops of trees growing in the Water Crater at left,
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of this ridge lies along the normal! to a line joining the centers of circles
inscribed in the large and small ends of the oval Main Crater. Vortman
(1965) shows topographic maps of similar ridges associated with intersect-
ing craters formed by the simultaneous detonation of separate buried ex-
plosive charges.

The structure in the rim near the line of section C-C' again matches
the structure in the wall. The general structure is a pile of thrust
slices overlying the pediment gravel. For the most part, bedding in these
slices is flat-lying or simply folded. The basal parts are more disturbed,
but commonly thrust slices with internally consistent attitudes overlie
pediment gravel with only a few'inches of breccia at their base. Along
the line of section, pediment gravel crops out between the bedrock in the
wall and on the rim, but in a segment about 40 feet wide to the southeast
there is complete continuity between the plate of rock maintaining approxi-
mately its preimpact attitude, described with the wall structures, and the
thrust slices. The same moderate dips continue outward but the strikes
swing into parallelism with the ridge. The beds at the base of this plate
are rolled under like a caterpillar tread, so that there is an anticlinal
fold with an overturned lower limb (fig. 4B). The axial surface of the
fold is sharply defined with some displacement along much of it. Downward,
the overturned limb becomes increasingly brokén by a series of thrust
faults, until a breccia several feet thick overlies the pediment gravel.

A similar structure appears in the next gully to the southeast, put on the
craterward side of the pediment gravel in the wall. The northwest-trending

steeply dipping block of units E1 and E2 seems to correspond to the steeply

dipping or overturned limb in unit E to the north. The plate of unit F,
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forming the broad face of the ridge, has ridden above this with the oppo-

site sense of deformation--the outer end has been folded up into a syn-
clinal rather than down into an anticlinal bend.

The contrast with Meteor Crater, where the upturned bedrock only very
locally grades into the debris unit, is striking. The increasing sparsity
outward of attitude symbols on the map reflects a steadily increasing de~
gree of brecciation. The contact of the ejecta from specific units with
mixed ejecta is somewhat arbitrary. The stratigraphic relation of the
mixed and unmixed ejecta is uncertain--it could be a lateral transition
or an overlap with either unit on top.

A complex structure is shown by the thin patch of ejecta on the south-
west rim of the Main Crater (fig. 6B), where the inverted syncline is shown
on the map. The beds at the crater lip immediately above pediment gravel
are right side up, but within a few feet outward they are folded through
nearly 180° to form an overturned flap. Top sense is determinable in these
beds, so the structure is well defined. It grossly resembles the structure
to the east in the vicinity of section E-E', except that, instead of an
overturned syncline with the normal limb lying in the wall and the over-
turned limb in a detached flap on the rim, both limbs lie on the rim. Ap-
parently simultaneously with or immediately after folding of the rim flap,
the entire overturned flap, together with the upper part of the unfolded

bedrock, was thrust outward onto the pediment gravel.

Impact metamorphism

All of the mapped ejecta corresponds to the throwout debris mapped at

Meteor Crater by Shoemaker (1963). This ejecta (and that exposed in the
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crater walls) exhibits no gross indication of impact metamorphism. An ex-
ception is the patch of unit EA lying just beyond the pediment gravel out-
crop east of the northeast ridge. This patch contains fragments of sand-
stone that are more cohesive than the unmetamorphosed material, but are
less dense and have open fractures normal to the bedding. In gross aspect,
the fragments resemble the shocked Coconino Sandstone from Meteor Crater,
except that broken surfaces have a glassy, granular appearance rather than
a chalky one. These fragments are apparently some of the material des-
cribed by Chao (1964) in which quartz grains were transformed to glass by
shock below the melting point, so that the original sand grains are pre-
served as glass.

The Henbury impactites described by Spencer (1933) and Taylor and
Kolbe (1964) lie scattered on the surface of the ejecta blanket north of
the Main Crater. They are probably remnants of a blanket corresponding
to the fallout layer of Shoemaker (1963), which has nowhere survived
erosion as a distinct unit. The impactites probably formed from shaly
material in units C or D. Material that has been partially melted but
with the original bedding still visible is concentrated on the northeast
ridge outside the rim crest. Such material is commonly folded on itself
or is even wrapped into the form of lava bombs, indicating that the mater-

ial was actually molten, unlike the shock-vitrified fragments of unit E4.

Comparison with other craters

Shoemaker and Eggleton (1961) have suggested that meteorite craters

fall into two structural types: the Barringer (Meteor Crater) type in
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which the bedding at the crater wall is turned increasingly upward and
outward closer to the crater and to the ground surface, culminating in an
overturned synclinal flap at the rim; and the Odessa type, in which the
bedding is deformed into an anticline with its axial surface just outside
the crater wall. Largely by analogy with craters produced by buried nuc-
lear devices, the Barringer type was attributed to greater penetration of
the meteorite and the Odessa type to lesser. The Rieskessel in south Ger-
many was suggested as a variant of the Odessa type, characterized by imbri-
cate thrust slices (the Schollen and Schuppen of Bentz, 1927) on the rim,
and attributed to the greater relative importance of gravity in the mech-
anics of large craters (the Rieskessel is 24 km in diameter).

The characteristics of all three structural types can be found in the
Henbury craters. The distribution of the features can in part be fitted
into a pattern. In the Main Crater, anticlinal folding seems to dominate
in the lower part of the walls and synclinal folding above (this is indeed
indicated in a generalized crater structure drawn by Shoemaker and Eggleton).
The predominance of imbricate thrust slices, much like those of the Ries-
kessel, on the northeast ridge may be due in part to the near parallelism
of the original bedding to the direction of thrust. The underfolding in
the lower part of the same section suggests an extreme case of the anti-
clinal buckling observed at Odessa, perhaps combined with underthrusting
of the type observed at Meteor Crater. There is a certain symmetry in
this section. 1In the lower part, beds were overturned by a couple with

the greater outward displacement below (fig. 4A), and in the upper part by
a couple with the greater outward displacement above (fig. 4B). The small

structure in the wall of the Main Crater shown in section D-D', on the
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other hand, indicates that the outward displacement in at least a small

area of the middle part of the wall exceeded that above or below. The vari-
ation of structural type from place to place in the crater walls and rims
must be partly related to local conditions that cannot be reconstructed

after the event.

Summary

Considerable variety is found in the structures in the walls and rims
of the larger craters at Henbury. ’Beds originally dipping into the crater
were deformed into concentric folds overturned outward with generally
steeply dipping axial planes. Some thrust faulting accompanied the fold-
ing and in places an imbricate series of thrust sheets was shoved over the
precrater surface on the rim. Beds on the opposite wall of the main crater,
which originally dipped away from the crater, were deformed into a series
of folds with shallowly dipping axial planes. An overturned flap lies on
this side of the crater rim, part of the flap is thrust outward as well as
overturned. There is, in general, structural continuity between the crater
walls and rims. OQutside the rim crests the ejected materials become in-
creasingly broken, but there is rarely a clear line between coherently de-

formed rock and throwout debris.
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RECENT GEOLOGIC AND LABORATORY INVESTIGATIONS
OF THE FLYNN CREEK STRUCTURE, TENNESSEE

by David J. Roddy

Introduction

The Flynn Creek structure in north-central Tennessee (fig. 1) has been
under study as part of a larger program of crater investigations by the
Branch of Astrogeology. Although this intensely deformed, circular struc-
ture has been interpreted both as a meteorite impact structure (Boon and
Albritton, 1937, 1938, 1942; Dietz, 1946, 1963; Baldwin, 1949, 1963;
Wilson, 1953, 1962; Shoemaker and Eggleton, 1961) and a "cryptoexplosion'
structure (Bassler, 1932; Bucher, 1936, 1963; Wilson and Born, 1936),
systematic investigations had not been previously carried out.

This report summarizes the results of recent field mapping and se-
lected chemical, mineralogic, and petrographic studies. Earlier reports
dealt with precrater stratigraphy, structure of part of the east and west
rims, breccia, structure of the central hill, and postcrater stratigraphy
(Roddy, 1963, 1964a), level of precrater ground surface, amount of post-
crater erosion, body of forcefully ejected breccia, precrater lithostatic

pressures, and structure of part of the southeast rim (Roddy, 1964b).

Geologic setting

Flat-lying Middle and Upper Ordovician limestones and dolomites sur-
round the Flynn Creek structure but are folded and faulted into a cir-

cular rim which encloses a partly buried crater about 3.5 km in diameter.
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The crater floor is underlain by breccia of Middle and Upper Ordovician
limestone and dolomite fragments ranging in size from a fraction of a
millimeter to nearly 100 meters. In the central part of the crater, a
partly buried hill consisting of intensely deformed Middle Ordovician lime-
stones and dolomites of the Stones River and Knox Groups rises nearly 100
meters above the surrounding crater floor. Brecciated rocks of the Knox
Group containing shatter cones have been raised at least 300 meters above
their normal level.

In the southern part of the deformed crater rim two major fault zones
are present (Roddy, 1964b). Within this part of the faulted rim, preser-
vation of strata of probable Richmond age indicates postcrater, pre-
Chattanooga erosion of less than 50 meters. Breccia in part of this faulted
section is interpreted as having been forcefully ejected during the struc-
tural deformation which occurred in the interval between Richmond and early
Late Devonian time (between about 420 and 350 million years ago).

A thin marine dcposit of early Late Devonian age, consisting of bedded
breccia and cross-bedded dolomite overlies the breccia of the crater floor.
Chattanooga shale of early Late Devonian age averages 10 meters in thick-
ness throughout the region, locally thickens within the crater to nearly
60 meters, and unconformably overlies all older rocks. Chert and shale of
the Maury and Fort Payne Formations of carly Mississippian age disconform-
ably overlie the Chattanooga Shale. Dissection during Recent time by
Flynn Creek and its tributaries has produced one of the best exposed cryp-

toexplosion structures in the United States.
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Field and laboratory studies

Mapping at a scale of 1 inch to 500 feet of the deformed rim and of
the brecciated section, encompassing an area of about 21 square miles, is
approximately 75 percent completed. Approximately 50 percent of an addi-
tional area of about 17 square miles surrounding the Flynn Creek structure
has been mapped at a scale of 1 inch to 1000 feet. The geologic contacts
have been mapped with an elevation control accurate to + 1 foot per 100
feet of elevation on both maps.

Conant and Swanson (1961, p. 13) have described the early Late De-
vonian erosion sugface in Tennessee as '". . .a peneplain that is notable
for its extent and degree of perfection." The contacts of this surface are
exposed in the valley walls throughout the mapped area and many hundreds
of field measurements show that relief in the area rarely exceeded 20
meters and more commonly averaged a few meters, with slopes less than 4°.

Any debris that might have been present on the crater rim was com-
pletely removed before the deposition of the Chattanooga Shale. Through-
out the mapped area the contact is very sharp between the rocks which
formed the early Late Devonian erosional surface and the basal unit of the
Chattanooga Shale. However, the crater was not in existence long enough
to have been filled during erosion of the rims and probably was about
100 meters deep before deposition of the Chattanooga Shale.

The unusual basal facies of the Chattanooga Shale within the crater

consists of cross-bedded carbonates and bedded breccia. These units thicken
to at least 15 meters in the crater and rapidly thin out on the upper flanks
of the crater walls. Evidence for a Late Devonian crater has caused specu-

lation that these beds are lake deposits consisting of fresh-water limestones
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and breccia fragments cemented by fresh-water limestones (Wilson and Born,
1936; Conrad and others, 1957). However, Conant and Swanson (1961) and
Huddle (1963) have described early Late Devonian conodonts in these rocks,
which indicate a marine depositional environment. Mineralogical and trace-
element studies indicate that the limestones occur only as fragments de-
rived from Ordovician limestones in the crater breccia and crater walls.
Other breccia fragments consist of dolomites and dolomitic limestones de-
rived from the surrounding contemporaneous erosion surface. X-ray analysis
indicates that the cementing material of this bedded breccia is well-or-
dered dolomite with less than 10 percent calcite. Ordering diffraction
lines of the dolomite superstructure agree well with those given by Gold-
smith and Heard (1961) for a well-ordered dolomite lattice. The cross-bed-

ded, thinly laminated unit overlying the bedded breccia consists almost

entirely of dolomite with less than 3 percent calcite. Dolomite in this
unit also exhibits a well-ordered lattice structure. The mineralogy of
this dolomite strongly suggests as a source area the rocks underlying the

early Late Devonian surface that surround the crater.

Some time after the crater was formed, relief in the Flynn Creek area
consisted of very low hills on the order of a few meters high with a few
as high as 20 meters. Deposition of the bedded breccia and cross-bedded
dolomite probably occurred in a coastal plain environment in the shallow
waters of the slowly advancing Chattanooga sea. Organic content in the
crater was probably high, but restricted circulation in the crater bottom
may have caused reducing conditions with dolomitizing brines similar to
those suggested by Deffeyes and others (1964) and Berner (1965).

The breccia outcrops and much of the deformed rim of the Flynn Creek
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structure have been carefully examined, but no unusual mineral assemblages
of any type have been observed in the field or in hand specimens. Anoma-
lous trace-element concentrations and mineral assemblages, high pressure
polymorphs and crystalline deformation have also been searched for by
laboratory methods.

were made on total rock samples collected from ten horizons
outside of the deformed crater, three fragments in the breccia, and eight
breccia matrix samples. To test natural variations, trace-element per-
centages were also determined on rocks from outside the deformed crater
for the same horizon but with the samples separated by several thousand
meters. The trace-element percentages for these samples from the same
horizon were very nearly identical, indicating only natural low percent-
age variations for these rocks.

The rocks from the breccia for analyses suggest they are all from a
level equivalent to the upper quarter of the deformed strata in the rim.
The trace-element percentages of these breccia fragments have values con-
sistent with the same upper quarter of the deformed rim strata and show no
trace element anomalies.

The trace-element levels in the breccia matrix differ from the levels
in the fragments only in that they have equal or lower percentages for
nearly all the elements. Perhaps the most important aspect is that there
were no trace-element enhancements of meteorite or volcanic constituents

in either the breccia fragments or the breccia matrix.

Extensive examination of the Flynn Creek rocks in outcrop and in thin
section has shown no traces of mineralization. Particular attention was

directed to possible very low temperature carbonate thermal metamorphism
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such as the production of talc alterations in clay carbonate zones, but
no thermal alterations of any type have been noted in the deformed rim
rocks, breccia fragments, or breccia matrix.

Rocks from the Flynn Creek structure have been examined for high-
pressure silica polymorphs (Roddy, 1964b) and aragonite, the high pressure ‘
form of calcite, but none were found.

Petrofabric studies of the deformed rim rocks at the Flynn Creek
structure have shown that the number of twin lamellae definitely increase
toward the Erater. Microfracturing parallel to the carbonate cleavage
directions also increases slightly toward the crater. The increase in
both the twin lamellae and the microfracturing is commonly restricted to
a narrow band a few meters to a few tens of meters wide around the crater
rim and adjacent to the breccia contact. Most of the large blocks located
in the breccia adjacent to the deformed rim also exhibit a large number

of twin lamellae and microfractures,

Structure

Noteworthy structural elements, shown in four cross sections in
figure 3, are a slightly to moderately raised rim; slight to intense rim
folds; major and minor normal, reverse, and thrust faults in the rim; a
major body of continuous breccia within the crater; a localized body of
probable forcefully ejected breccia; and a central uplift of faulted,
folded, and brecciated rocks. The location of these cross sections is .
shown on the geologic map in figure 2,

Parts of the raised rim have nearly 50 meters of uplift, while in

other parts of the rim there is only a few meters of uplift, Where broad
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down-folding occurs in the rim, a broad gentle uplift is also present.
Normal fault blocks in parts of the north and south rim exhibit consider-

able folding.

In the southeast rim, downthrow on one fault block is nearly 100 meters,

but it appears that this is part of a very large rotated block rather than

a simple normal fault (Roddy, 1964b). High-angle thrusts and reverse faults

are present in the southeast and east part of the rim.

An unusual type of fold suggesting strong horizontal compression is
shown in cross section B-B' in the northeast rim and in C-C' in the east
rim (fig. 3). Both folds have vertical axial planes, approximately concen-
tric with the rim, and with horizontal shortening on the order of 35 per-
cent. Beds below these folds are not exposed, but beds above rapidly flat-
ten, suggesting considerable bedding plane slippage in the tightly folded
strata. The beds forming these folds were less than 100 meters below the

ground surface when the Flynn Creek deformation occurred (Roddy, 1964b) .
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GEOLOGY OF THE .I0SES ROCK INTRUSION,
SAN JUAN COUNTY, UTAH
by Thomas R. McGetchin

Introduction

The Moses Rock intrusion is one of four known intrusive pipes or
dikes of kimberlite (micaceous serpentine breccia) on the Colorado Pla-
teau. All are within the Navajo Indian Reservation, in southeast Utah
and northeast Arizona. Three are just south of the San Juan River aleng
Comb Ridge, a pronounced topographic feature formed as a result of dif-
ferential weathering of rocks in the Comb monocline. This fold forms the
eastern border of the Monument upwarp, a major structural feature of this
part of the Colorado Plateau, and the intrusions are localized within 2
or 3 miles of the axis of this fold.

The intrusion at Moses Rock has not been described in detail pre-
viously, but was mentioned by Shoemaker (1962). The pipe at Mule Ear has
been mapped by Shoemaker and Moore (in preparation); and the pipes at
Garnet Ridge, approximately 13 miles south of Moses Rock, were described
by Malde (1954), and Malde and Thaden (1963). A serpentine intrusion at
Buell Park, near Fort Defiance in northeast Arizona, occurs on the Defi-

ance monocline (Allen and Balk, 1954).

Location and local geology

The intrusion at Moses Rock is a large dike rather than a pipe,
about 7 airline miles east-southeast of Mexican Hat, Utah. It has in-
trusive contacts with the red beds of the Permian Cutler Formation. At
the east end of Monument Valley, the Cutler rocks dip gently eastward
into the Comb monocline, where they locally attain dips of 40°. The
local structure is complicated by open folding forming the Raplee anti-
cline and Mexican Hat syncline, west of the intrusion.

Two types of intrusive rocks are locally present: serpentine
breccia dikes and numerous necks and dikes of minette, a potassium-

rich lamprophyre (see Williams, 1936). Dikes of both types trend
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cenerally north-south; the necks commonly occur along dikes. No cross-
cutting relationships have been observed locally, although at Buell Park,
minettes cut the kimberlites. The question of the age and genetic rela-
tionship of the two rock types is open.

The main intrusion was formed by coalescence of two en echelon dikes
that strike north-south and dip steeply westward. Its total length is
unknown because the southern end is buried beneath recent sand dunes, but
it is well exposed for more than four miles of its length. The north end
reaches the San Juan River canyon. Its width reaches approximately 1000

feet locally, but for most of its length it is much less.

Intrusive material

The dike is filled by lithologically distinct, but in part grada-
tional, breccia units. These may be described as mixtures of three end
members: (1) kimberlite--serpentine breccia bearing olivine, pyroxene,
carnet, calcite and small angular rock and mineral fragments; (2) inclu-
sions of basement rocks--metamorphic and igneous rock fragments not ex-
posed locally; and (3) inclusions of sedimentary rocks--limestone and
clastic sedimentary rocks derived from Paleozoic and Mesozoic strata now
exposed at the surface or known from drilling records. Units may be
mapped within the intrusion on the basis of relative abundance of these
materials and the size of inclusions, which varies considerably from
place to place.

Dense kimberlite occurs as smaller dikelike bodies within the main
intrusion at four known localities. Generally, the kimberlite contains
finely comminuted grains and blocks of sedimentary rocks that make up as

much as 90 percent of the dike locally.

Inclusions

The largest blocks in the intrusion were derived from the Paleozoic
and Mesozoic sedimentary rocks lining the vent and are as much as several
hundred feet long. Grain and fragment size varies continuously from these -

large blocks through silt-size grains. It is possible to identify blocks
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derived from specific stratigraphic horizons, and thus to determine
displacement accurately. In general, very large blocks are displaced
downward relative to their original stratigraphic position, whereas
smaller blocks are displaced upward. Larger blocks are generally angu-
lar and smaller blocks, more spherical. Size-frequency distributions

of smaller blocks contained in bulk samples taken at five localities
have the form of Gaudin-Meloy size distributions, which are character-
istic of comminution produced by ball mills (Meloy, 1963). Metamorphism
and alteration of included blocks derived from red beds and limestones
are minor or absent.

The size of the basement inclusions varies greatly from place to
place, and unlike the sedimentary inclusions, their size-frequency dis-
tribution does not have the form of a simple grinding relationship. Pre-
liminary results suggest that populations, in terms of presence and ab-
sence of specific rock types, are not identical from locality to locality.
Basement inclusions are essentially unmetamorphosed rhyolite, granite,
syenite, diorite and gabbro; unfoliated but altered greenstone porphyries
(metabasalts or meta-andesite porphyries); foliated, low-grade calc-
silicate rocks; foliated sillimanite-bearing, pelitic schists; garnet-
bearing gabbroic rocks; granite gneiss; and pyroxenite and garnet-pyrox-
ene rock (eclogite). Clearly, these rocks were transported upward during
the eruption which produced the dike, and thus were derived from the
section through which the intrusive material passed. These rocks, then,
represent a badly scrambled vertical section of unknown, but certainly

great, thickness.

Contacts

Contacts dip from 90° to about 70°. A well-developed fracture sys-
tem is present everywhere at the contact and is parallel to the contact.
The density of fractures diminishes with distance from the contact, dis-
appearing within 200 to 300 feet. Deformation of wall rocks is very
slight or absent. Beds are locally uparched slightly. Metamorphism and

alteration at the contact are restricted to very thin bleached zones in
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red sandstone, siltstone and limey sandstone units. Bleaching is
restricted to joints very near the contacts and generally disappears

within about 50 feet from the contact.

Satellite intrusions and structures

A number of small intrusions bearing serpentine breccia and inclu-
sions of basement rocks occur within several miles of the main dike at
Moses Rock, and are significant since they are almost certainly geneti-
cally related. These include several dikes, 2 to 3 feet wide at most,
carrying spherical inclusions up to several inches in diameter.

About a mile southeast of the southern end of the main dike is a
small elliptical plug, 800 by 500 feet in plan, with vertical or steeply
dippine contacts. The intrusive material is nearly all comminuted clas-
tic sedimentary rock and moderately large blocks, all displaced downward
stratigraphically. A search revealed a very few basement inclusions near
the center of the plug, all less than an inch in diameter. A well-devel-
oped fracture system forms a collar surrounding the vent in the wall
rocks. These fractures are commonly stained near the contact, decrease
in number away from the contact, and are essentially missing within 100
feet from the contact.

Just south of this small pipe is a large collapse depression, about
4000 feet in diameter. Its southern extremity is covered with dunes, but
a hemispherical area is well exposed. At the contacts, undeformed wall
rocks are folded abruptly downward along a well-defined hinge line; a set
of local joints in the wall rocks parallels this hinge. Units are not
brecciated or severely deformed within the structural depression except
in an area measuring about 1700 by 400 feet and slightly off-center toward
the northeast. Here the beds are disrupted into individual blocks which
have been rotated to various orientations; however, the coherence of the
lithologic units is maintained, so that blocks derived from specific units
can be traced along the projected strike of the unbrecciated beds and
through the breccia plug. Basement rocks have been found in alluvium

covering part of the breccia plug, but they are rare and are always small.
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Bleaching of rocks along joints i: common. Faulting is present but

displacements are small.

Summary and conclusions

This project deals with the geology of a kimberlite (serpentine brec-
cia) dike, 4 miles long, in southeast Utah and with the petrology of the
large number of inclusions contained within it. The interesting and sig-
nificant feature of these inclusions of basement rock is that they repre-
sent samples derived from a vertical section of unknown but certainly
great thickness. The variety and abundance of these rocks and the pre-
sence of a suite of very dense rocks, including pyroxenite and eclogite,
suggests that this column may extend into the mantle itself. Thus, in
effect, the intrusion may have provided a natural "mohole."

The intrusion is probably of mid- or early-Tertiary age; thus the
present surface is probably more than 1000 feet lower than the surface at
that time. A best guess of the original surface expression of the intru-
sion would be very similar to certain lunar rilles that contain crater
chains, for example, the Hyginus rille, the Stadius chain, and the promi-
nent rille in the eastern part of the floor of the crater Alphonsus, as
shown in the Ranger IX photographs. Although, of course, nothing can be
said regarding composition of the lunar material, the similarity of form
suggests a similar type of violent, probably highly gaseous, eruptive

volcanism.
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PSEUDOTACHYLITE FROM ARCHEAN GRANITE
OF THE VREDEFORT DOME

by H. G. Wilshire

Introduction

The Vredefort dome, located in the Transvaal and Orange Free State,
South Africa, is a nearly circular structure about 75 km in diameter.
Rocks exposed in the structure consist mainly of granite and a thick se-
quence of shale, sandstone, conglomerate, and volcanic rocks, all of Pre-
cambrian age. Granite, the oldest abundant rock type, forms the core of
the structure and has been raised ". . .as a solid cylindrical plug through
a vertical distance of at least 40,000 feet'" (Nel, 1927, p. 107). The
Precambrian sedimentary and volcanic rocks are deformed concentrically
about the granite and are overturned through several thousand feet of the
section. The sedimentary and volcanic rocks are metamorphosed for a dis-
tance of as much as 10 km from the granite core, but not concentrically
about it (Nel, 1927, p. 84). Approximately the southeastern one-third of
the structure is covered by undeformed sandstone and shale of middle Per-
mian age (Ecca Series, Karroo System), which provides the only information
as yet available on the minimum age of the structure.

Pseudotachylite, a very fine-grained rock, occurs in irregularly dis-
tributed patches in all rock types of pre-Karroo age in the Vredefort dome
(Hall and Molengraff, 1925). The origin of the pseudotachylite, in some

way related to the origin of the dome structure, has been the subject of
many theories. These include shock of unspecified origin or gas fluxing

resulting from deep-seated explosions (Shand, 1916), crushing and partial
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fusion during doming of the structure (Hall and Molengraff, 1925), crushing

and metamorphic recrystallization (Willemse, 1938), fluidization (Reynolds,
1954; Whitten, 1959; Bisschoff, 1962; Poldervaart, 1962), and crushing and
fusion caused by meteorite impact (Daly, 1947; Dietz, 1960). Most of these
theories have in common the assumptions of high temperature and pressure
and crushing without significant shearing.

The purpose of this paper is to describe some microscopic features of
pseudotachylite from Archean granite in the core of the Vredefort dome that
bear on the above interpretations. The samples studied were collected by
Warren Hamilton, U.S. Geological Survey, from a quarry on Otavi farm about

6 km northeast of Parys.

Mode of occurrence

Occurrences of pseudotachylite in the Vredefort dome are shown by
Hall and Molengraff (1925, map following plate 39) and by Nel (1927). The
pseudotachylite is not concentrated along mapped faults, but is best devel-
oped in the more intensely deformed part of the structure. Bisschoff (1962,
p. 210) states that there is no relation between the occurrence of pseudo-
tachylite and major faults, but (p. 222) does consider that local faulting
in the occurrence northeast of Parys is possible.

In the quarry exposures northeast of Parys, and about 4 km into the
granite core of the dome, pseudotachylite occurs as a complex net-vein
system in a breccia of foliated Archean granite (fig. 1). The top of the
zone of pseudotachylite is marked by a thin pseudotachylite stringer with
a low dip (Bisschoff, 1962, fig. 1), but the bottom is not exposed. Veins

of pseudotachylite form the matrix of randomly oriented, angular to
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Fig., 1A.--Pseudotachylite net veins in granite northeast of Parys.

Fig, 1B.-=-Randomly oriented, subrounded, foliated granite blocks
in pseudotachylite; same location as figure 1A, (Photographs by

Warren Hamilton,)
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subrounded blocks of granite, and fill cracks separating large, slightly
rotated blocks of granite, some of which may not have been completely de-

tached from the wall rock.

Microscopic characters of inclusions

and pseudotachylite from Otavi farm

Inclusions

Almost all of the rock fragments enclosed in the pseudotachylite are
of the adjacent granite, but two fragments of quartz diorite of unknown
origin were found in thin sections.

Granitic inclusions have a hypidiomorphic granular fabric and a weak
foliation. Principal minerals are perthite, oligoclase, and quartz with
accessory biotite, and minor sphene, ilmenite, rutile(?), apatite, zircon(?),
and secondary muscovite, chlorite, and clinozoisite. Perthite occurs as
large, irregular grains with rod-shaped exsolved albite. Oligoclase is
anhedral or subhedral and is unzoned. Myrmekite occurs at some boundaries
between oligoclase and perthite grains. Both feldspars are slightly seri-
citized, and plagioclase is slightly chloritized. Large interstitial
quartz grains are invariably cut by strain bands and are crossed by thin,
irregular veins of unstrained polygonal and granular quartz mosaics. In-
terstitial pockets of quartz mosaics (fig. 2A) occur throughout the inclu-
sions. The boundaries of polygonal quartz grains are probably irrational
faces and closely resemble recrystallized olivine and plagioclase in
ultrabasic xenoliths in basalts (see Talbot and others, 1963). Greenish
brown biotite occurs as large books, generally cut by strain bands, and

as small, undeformed books. Sphene and i lmenite are commonly intergrown
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with biotite; sphene has incomplete rims of small anatase(?) rods, and in
places rims the ilmenite.

Along the boundaries of the granitic inclusions, the feldspars and,
to a lesser extent, quartz are mylonitized (fig. 2B). The perthitic struc-
ture of alkali feldspar is retained up to the thin marginal mylonite, and
plagioclase shows no sign of change other than granulation. 1In piaces,
the light-colored mylonite is interlayered with pseudotachylite containing
minute prisms of rutile(?) or anatase, plates of hematite(?)" minor parci-
cles of an Fe-S(?) phase, and rods or plates of pale green mica. Generally
the mafic mineral content of pseudotachylite in the layered rock is less
than that in the main pseudotachylite vein. Quartz is locally irregularly
fractured, the cracks being occupied by minute opaque grains; unstrained
polygonal grains of quartz remain unchanged up to the granulated margin of

the inclusion. Biotite near margins of the inclusions is partly replaced
by hematite(?) and rutile(?) and beccmes less colored. At the inclusion
boundary, the biotite is broken down into randomly oriented, minute flakes
of brown to pale green mica with abundant opaque grains and rutile(?).
Thin veinlets of such new mica and opaque minerals extend from the biotite
into adjacent minerals (fig: 2B). There are no concentrations of opaque
minerals or mica in pseudotachylite adjacent to decomposed biotite at the
inclusion boundary. Very thin veins oif pseudotachylite extend into the in-
clusions along grain boundaries and irregular cracks and commonly terminate
in small patches of chlorite and carbonate. Ilmenite, sphene, and apatite
! Opaque minerals were identified in polished section by B. F. Leonard,
U.S. Geological Survey (written communication, 1965). Leonard considers

all of the identifications of opaque minerals in the pseudotachylite to be
tentative because of the extremely fine grain size.
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are unchanged at the inclusion margins.

One granitic inclusion has an unmylonitized boundary, and minute
plates of mica in the pseudotachylite protrude into feldspars of the inclu-
sion. There are no indications of partial melting of any constituents of
the granite.

Fragments of quartz diorite have a hypidiomorphic granular fabric and
consist of quartz, plagioclase, blue-green amphibole, and greenish brown
biotite, sphene, and apatite. Plagioclase locally has a patchy undulatory
extinction, and quartz exhibits strain banding or occurs as small, inter-
stitial pods of interlocked polygonal and irregular grains like those in
granitic inclusions. The amphibole occurs as undeformed subhedral or euhe-
dral prisms and as irregular grains interstitial to the felsic minerals.
Biotite is interstitial and is generally strongly deformed by strain bands.

Except for local mylonitization of quartz and plagioclase, the mafic
and felsic constituents of the quartz diorite fragments are not granulated
at the edges of the inclusions. Plagioclase at the margins has strong
undulatory extinction and strain bands and is penetrated by minute plates
of mica as in the granitic inclusion. Biotite and amphibole are decomposed
at and near the inclusion margins, biotite as in the granitic inclusions,
and amphibole to minute opaque minerals and other unidentified minerals.
Sphene at the boundaries of these inclusions is also replaced by opaque
minerals.

Very small rock fragments isolated in the pseudotachylite are com-
posed dominantly of the irregular, strained quartz and mosaics of poly-
gonal quartz (fig. 2D) found in the granite and quartz diorite inclusions.

Plagioclase, often severely distorted, and perthite are present in places
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Fig. 3A.,--Well-rounded fragment of plagioclase (white) and perthite
(small dark gray patch in upper right part of inclusion) in pseudotachylite
(black). Fragment is entirely surrounded by mylonite (dark gray, spotted).

Crossed nicols.

L j.om”

Fig. 3B.--Mylonite envelope around granular quartz mosaic (white,
high relief) stretched in plane of foliation in pseudotachulite (dark).
Plane-polarized light,
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in the quartzose aggregates, and occur uncommonly as isolated fragments.
Identifiable biotite is extremely rare in the small rock fragments, and no
amphibole was observed. Many of the smaller fragments are well rounded,
and elongate ones have a common orientation; most are partly bounded by
thin mylonite rinds and some are conpletely enclosed in mylonite (fig. 3A).
In places the mylonite rind has been stretched out parallel to the foli-
ation in pseudotachylite (fig. 3B). Many of the small fragments are cut
by thin mylonite bands, some of wlich are localized along grain boundaries,
some confined to specific mineral types, and some cut randomly across all
minerals present. Pseudotachylitc locally penetrates the rock fragments
along mylonite bands, and minute opaque minerals and flakes of green mica
like those in the pseudotachylite are found along grain boundaries and

cleavages.

Bisschoff (1962, p. 211 and plate 2, fig. 2) considers the mosaics
of quartz to have recrystallized during formation of the pseudotachylite.
About half of those mosaics, however, are identical in all respects with
the small interstitial pods in the granitic and dioritic inclusions (com-
pare figs. 2A and 2D). Although it is likely that the polygonal quartz
mosaics were formed by recrystallization, the recrystallization predates
the pseudotachylite, and such fragments were derived without change from
the country rock. The remainder of these fragments are somewhat finer
grained than any seen in the inclusions and may have been derived from

other parts of the granite not represented in the samples studied.
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Pseudotachylite

Pseudotachylite consists of minute pale green mica flakes®in a grano-
blastic to optically unresolved matrix of quartz and feldspar. Minute
crystals of rutile(?) and hematite(?) make up considerably less than 10
percent of the rock (B. F. Leonard, written communication, 1965), and
small amounts of chlorite and carbonate are present. Rock and mineral
fragments grade down in size to submicroscopic. The coarser mylonites have
a granoblastic fabric produced by welding or cementation of the rock flour,
so the original shapes of comminuted grains could not be determined. There
are no indications of partial fusion or resorption of any mineral grainms.

All the common minor acces;ories—-ilmenite, sphene, apatite, and zir-
con--found in the granite and quartz diorite inclusions are also present
in pseudotachylite. Recognizable biotite of a size comparable to that
in the inclusions, however, is rare and no amphibole survived formation
of the pseudotachylite. As noted before, sphene at the edges of quartz
diorite inclusions is partly replaced by opaque minerals; no relicts of
sphene were found in pseudotachylite near the quartz diorite.

Near the boundaries of inclusions, much of the pseudotachylite is
darker than elsewhere because mica and opaque minerals are more abundant.
Locally the dark pseudotachylite is interlayered with thin bands of
mylonite and bands intermediate between pure mylonite and the darker pseudo-
tachylite; dark layers contain considerably more large rock and mineral

2X-ray powder photographs of pseudotachylite revealed only mica, prob-

ably a 1M or 3T polymorph, quartz, and alkali(?) feldspar. The opaque min-
erals, though apparently abundant, are not present in sufficient quantity
to be detected in whole-rock powders. No amphibole, which was reported by
several authors on the basis of optical study, was found. The strongest
peak of coesite (3.09A) was not found and the strongest peak of stishovite
(4.36A) is masked by a feldspar peak.
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fragments than lighter layers. Dark pseudotachylite grades into normal
pseudotachylite abruptly, and in places there are bulbous protrusions of
dark into light pseudotachylite, but the microscopic fabric is continuous
between them. Small patches of euhedral feldspar laths are found locally

in the dark pseudotachylite.

Physical conditions of pseudotachylite formation

Most of the diverse theories that have been applied to the origin of
the Vredefort pseudotachylite require high pressure, high temperature,
and absence of shearing. The available information does not allow close
definition of pressure limits but limits the temperature, with minor ex-
ceptions, to less than about 650° C; and shearing may have played an
important role in comminution of the country rock.

If the pseudotachylite formed as a consequence of the formation of
the Vredefort dome, the pressure on the country rock, especially in the
collar of the dome, probably exceeded the lithostatic pressure. The maxi-
mum lithostatic pressure, corresponding to a possible predome cover of
13 km of sedimentary rock (Hall and Molengraff, 1925, p. 135), is on the
order of 3 kb. The apparent absence of high-pressure polymorphs of
silica and of an amorphous phase (short-range order phase; De Carli and
Milton, 1964) replacing quartz indicates pressures less than about 20-30

kb (Boyd and England, 1959). ©No data now available allow closer specifi-

cation of the pressure range of pseudotachylite formation.
With the exception of Willemse (1938), authors concerned with the
origin of the pseudotachylite have considered the temperature of forma-

tion to be high, generally above that required to fuse granite. These
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opinions are based entirely on fabric relations that include fused plagio-
clase with flowage structures (Shand, 1916), embayments of crystal and rock
fragments (Shand, 1916; Hall and Molengraff, 1925), and occurrence of newly

crystallized feldspar, sometimes as spherulitic growths (Shand, 1916; Hall

and Molengraff, 1925; Bisschoff, 1962). On the assumption that the fine

granularity indicates low volatile content, Daly (1947, p. 132) suggested
a minimum temperature of about 700° C. Following the argument-th;t Rey-
nolds (1952, 1954) used in determining the temperature of granophyre in
the Slieve Gullion area, fusion of plagioclase of average composition
An20 (Willemse, 1938, p. 84) indicates a temperature between about 1300° C
at atmospheric pressure and about 900° C at 5 kb water pressure (Yoder

and others, 1956).

Although there may be evidence favoring local attainment of tempera-
tures above 700° C, the survival of perthite, both at the edges of granite
inclusions and as isolated grain fragments in the pseudotachylite, is a
clear indication that prevailing temperatures were less than about 650° C
and perhaps much less. The temperature maximum on the alkali feldspar
solvus is about 650° C and homogenization of perthite is attained in 24
hours at 700° C (Tuttle and Bowen, 1958, p. 42-43); the pressure dependence
of the solvus is probably small because of the small volume differences
of homogeneous and exsolved feldspars (Tuttle and Bowen, 1958, p. 42).

Further evidence of low temperature is found in the survival of quartz

without any indication, such as shattering inside the mylonite envelope,
that it has gone through the high-low inversion; this indicates that the
temperature was less than about 600° C.

These indications of low temperature necessitate a review of the
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evidence cited by other authors in favor of high temperature. No one has
yvet demonstrated the existence of glass in the Vredefort pseudotachylite,
but, as the age of the structure is known no closer than pre-Middle Permian,
devitrification of glass over a long period cannot be ruled out. There are,
however, good examples of mylonitized quartz and feldspar in which ther
mylonite envelope has been stretched out by flow in a manner closely simi-
lar to those of '"fused" plagioclase and quartz illustrated by Shand (1916,
plate 19, fig. 2) and Bisschoff (1962, plate 2, fig. 6). The same struc-
tures are considered by Hall and Molengraff (1925, p. 103; plate 23, fig.

1) to represent mylonitized granite. Unless the presence of glass can be
demonstrated, this fabric is not evidence for fusion. 1In the thin sections
examined by the writer, embayments and rounded corners of rock and mineral
fragments like those illustrated by Shand (plate 18, fig. 1) and Hall and

Molengraff (plate 20; plate 21, fig. 3) and ascribed by them to partial

fusion, occur where mylonite veinlets cut the rock and mineral fragments
and where mylonite envelopes surround the fragments; rather than indicating
that the surrounding pseudotachylite was liquid, such structures suggest
that it was solid and contributed to frictional granulation of rock and
mineral fragments.

On the basis of the supposed fusion of plagioclase, Shand (p. 208)
considers that heat caused the breakdown of biotite, thereby furnishing
magnetite to the pseudotachylite. Although it is agreed that biotite is
the principal source of the iron oxide, it seems more likely that iron was
leached by low-temperature hydrothermal solutions. High-temperature break-
down ol amphiboles and micas is common in volcanic rocks but also involves

crystallization of pyroxene and plagioclase and is a low-pressure phenomenon
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(Washington, 1896; Larsen and others, 1937); leaching of iron and titanium
from biotite by low-temperature hydrothermal alteration, however, is common.

The formation of new crystals of feldspar and amphibole, as spherulitic
growths in places, has been cited by the above-named authors as evidence of
crystallization from a mélt. That this is not a firm criterion of fusion
was pointed out by Waters and Campbell (1935, p. 500). Philpotts (1964,

p. 1025) determined that plagioclase microlites in pseudotachylite from
near Parys have a structural state intermediate between that of high- and
low-temperature plagioclase. His conclusion (p. 1030) that all the pseudo-
tachylite from the Vredefort region was formerly in a molten state, however,
does not take into account the very local occurrence of such newly formed
minerals, but his evidence does suggest that local hot spots developed in
the pseudotachylite.

The conclusion based on the evidence cited above, as well as the ob-
jections raised against criteria for fusion, is that the prevailing temp-
erature during formation of the pseudotachylite was less than about 650° C
and probably less than 600° C. A minimum temperature cannot be specified,
but may have been well below 600° C.

The conclusion of Shand (1916, p. 207) that shearing in the granite
was unimportant is based on the sharpness of contacts between the pseudo-

tachylite and granite. Hall and Molengraff (1925, p. 99) reached the

same conclusion because of the random orientation and intersection of crush

zones and general absence of consistent schistosity. They found (p. 102),

however, that sharp contacts are the exception, and that those that do exist
are the result of injection of pseudotachylite from another source. 1In

the thin sections described by the writer there is abundant evidence of
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shearing in the form of discontinuous mylonite bands along inclusion bound-
aries and of mylonite envelopes around small inclusions. Neither the mylonite
rinds nor the rounding of such fragments is to be ascribed to "sand blasting"
in a fluidized system as suggested by Reynolds (1954, p. 592) and Bisschoff
(1962, p. 223); being entirely an attritional process, this would not leave
mylonite rinds on the fragments or allow for the flow distortions of such
rinds. Both Hall and Molengraff (1925, p. 108) and Bisschoff (1962, p. 222)
concede that some shearing has occurred in the pseudotachylite near Parys,

but there is no apparent way to determine the magnitude of fault offsets.

. The amount of shearing that might be expected depends on the manner

in which the breccia containing the pseudotachylite was formed. Shand

(1916, p. 216) suggested that the brecciation was caused by deep-seated
¢cxplosions of unspecified origin. Bisschoff (1962, p. 223) supports this

theory and ascribes the explosions to high magmatic pressure resulting from

a subjacent pluton. Hall and Molengraff (1925, p. 99) consider the breccia

as well as fine crushing to be due to omnilateral pressure of unspecified

origin. As an alternative to distant causes of brecciation, the following

hypothesis may be applicable to those occurrences of pseudotachylite in
which faulting may have played a role (see Manton, 1962). Movement at an
angle to axes of curves in a fault plane may result in locally dilated
zoncs. 1If the rock is under high confining pressure, the dilated zones

are temporarily at a lower pressure and rock bursting may produce a breccia
whose size distribution is governed by pre-existing fractures and other
structurcs in the country rock. Further fault movements through and along
Lthe breccia zone may then cause additional mylonitization of the breccia

and injection of the mylonite into fractures separating breccia fragments.
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Mylonite or fused rock may migrate over a pressure gradient for greater
distances into the breccia pods, as suggested by Philpotts (1964, p. 1031).
Support for this interpretation is drawn chiefly from the close similarity
of the Vredefort pscudotachylite to pseudotachylite and mylonite associated
with faults throughout the world (Waters and Campbell, 1935, Whitten, 1959;
Philpotts, 1964). 1In this view, the pseudotachylite is thought to be com-
posed dominantly of mylonitized countiy rock that has been slightly re-
crystallized, as c¢nvisaged by Willemsc (1938). The main mafic constituents,
mica and iron oxide, of the pseudotachylite were derived from biotite of
the country rock, the oxides having been leached from the biotite and the
small mica flakes representing mylonitized biotite. Inhomogeneities in
distribution of the mafic constituents are ;onsidered to be due to incom-
plete mechanical mixing of mylonite.

An alternative explanation of th¢ pseudotachylite as tuffisite
(Reynolds, 1954; Whitten, 1959; Bisschoil, 1962; I'oldervaart, 1962) is
considered unlikely for the following rvcasons. Evidence, such as a vesic-
ular structure, for the former presence of very much gas is generally
lacking. Pseudotachylite in fault zones (Beetz, 1937, p. 259) is found
as far as 20 km from the hypotheti.al buried pluton that is Bisschoff's
(1962, p. 223) source of fluidiziny gas. Analyses of pseudotachylite and
its parent rocks (Willemse, 1938, rablc 9) reveal only negligible oxida-

tion of iron, a feature difficult (o r.concile with an expectably high P

0,

in a fluidized system.

Summary

Pscudotachylite occurs in net-veins in the Archean granite core of
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the Vredefort dome. The microscopic fabric of the pseudotachylite and its
inclusions indicates that little, if any, fusion has taken place, and that
shearing was probably a dominant factor in the rounding and comminution of
rock fragments. The survival of perthite derived from the granite indi-
cates that the prevailing temperaturc during formation of the pscudotachy-
lite was less than about 650° C.

Rock bursting into dilated zones caused by movement along irregular
fault planes is postulated as a cause of formation of breccias in which
the pscudotachylite is found; further movement in and along the breccia
zones caused mylonitization of the rock and injection of mylonite into

fractures separating the rock fragments.
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GEOLOGY OF THE NORTHERN PART OF THE TWIN LAKES BATHOLITH,
LAKE AND CHAFFEE COUNTIES, COLORADO

by H. G. Wilshire, J. T. O'Connor, and G. A. Swann

Introduction

Lake Creek, in the central part of the Sawatch Range, Colorado, dis-
sects the Twin Lakes batholith, the northern part of which (fig. 1) is
the principal subject of this report. This small batholith is exposed
over about 50 to 60 square miles and is composed of porphyritic quartz
monzonite, which intruded Precambrian metamorphic and igneous rocks and
is itself intruded by rhyolite dikes and small, irregular bodies of gran-
ite. Howell (1919, p. 33) considered the Twin Lakes intrusion as possi-
bly of Mesozoic age, but Stark and Barnes (1935, p. 474) list it as
Tertiary. It is labeled as Tertiary on the geologic map of Colorado
(Burbank and others, 1935). No radiogenic age determinations are as
yet available, so the age of the intrusion cannot be specified with cer-
tainty.

The studies of the area by Howell and Stark and Barnes were both of
a reconnaissance nature, and considerable revision of the shape and posi-
tion of the northern part of the Twin Lakes batholith has been made in
the present investigation. About 60 percent of the area studied is
covered by moraine and colluvium, which are not shown on the map. Be-
cause suitable topographic base maps are not yet available, the results
of mapping on aerial photographs were transferred to a U. S. Forest

Service drainage map. (fig. 1).
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The area was mapped primarily by Wilshire and 0O'Connor during the
summer of 1964. Swann is responsible for the petrographic work. The
study was begun to establish a base for high explosive cratering investi-
gations in granitic rocks that will be carried out in fiscal year 1966
by C. H. Roach. Although the mapping is incomplete, the area covered ai-
lows performance of cratering experiments under controlled conditions in

a variety of structural settings that have application to lunar problems.

Geologic setting

The Twin Lakes batholith is within the northeastward-trending
"oineral belt' series of granitic intrusions in Colorado (Tweto and
Sims, 1963). A recent regional gravity survey (Case, 1964) across the
Sawatch and Mosquito-Tenmile ranges suggests that the Twin Lakes intru-
sion and others in the area are surface expressions of a shallow and
much larger granitic mass. The country rock into which the Twin Lakes
quartz monzonite was intruded consists predominantly of granitic gneiss
and fine- to medium-grained, weakly foliated granite with some two-mica
schist., quartzite, calc-silicate rocks, and weakly foliated granodiorite.
These rocks were not studied closely beyond the area adjacent to the
Twin Lakes intrusion; more detailed descriptions are given by Howell
(1919).

At the southwestern edge of the area mapped (fig. 1) a large zone
of intensely brecciated Precambrian rock, consisting of blocks as large
as 25 feet across embedded in a finely comminuted matrix, is in contact

with the Twin Lakes quartz monzonite. Neither the Twin Lakes rock nor
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the surrounding unbrecciated Precambrian gneiss 1is highly deformed, and
the breccia consists of a coarse, weakly to moderately foliated, biotite-
rich granodiorite. Similar Precambrian rocks are not common along the
contact with the Twin Lakes intrusion, but have been observed north and
northwest of the breccia zone. The breccia is perhaps the result of sub-
jacent, explosive volcanic activity related to nearby rhyolite intrusions
and flows, but no volcanic material was found in the breccia.

The northern part of the Twin Lakes intrusion is cut by many small
(3 inches to 25 feet wide) faults with a general north to northeast
trend (fig. 1). The contact with Precambrian rocks is offset by some of
the faults, but the direction and amount of displacement on most of the
faults, could not be determined. The fault zones are generally intensely
altered and some contain a mesothermal type of mineral deposits that have

been extensively prospected. Rhyolite dikes occupy many of the faults.

Contact relations of the batholith

The trend of the contacts of the Twin Lakes intrusion (fig. 1)
indicates a generally steep dip like that shown by Stark and Barnes
(1935), and different from the low dips indicated by Howell's map
(1919). 1In detail the contact with Precambrian rocks is very irregular
both in strike and dip. Even in the limited vertical exposures avail-
able, the dip of the contact changes as much as 50° in a few hundred
fecet. The low dip of the contact south of Twin Lakes recorded by
Howell (1919) and Stark and Barnes (1935) was not confirmed; the area

shown by these authors as composed of Twin Lakes quartz monzonite
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is mostly covered by moraine, and few bedrock exposures, all Precambrian,
were found.

Where the contact is well exposed, the Twin Lakes quartz monzonite
cuts sherply across the foliation of the Precambrian rocks. Apophvses
ol Tuwin Lakee anartz monzonite accur Tacally and extend ceveral tens nf
{eet into the Precambrian rocks. A large block of Precambrian granite
is isolated in the quartz monzonite west of Echo Creek, and small angular
slabs and irregular fragments of Precambrian rocks are locally enclosed
in the quartz monzonite near the contact.

A small roof pendant of Precambrian gneiss occurs just east of the
divide between Sayers and La Plata Gulches (fig. 1). La Plata Peak is
also composed of Precambrian gneiss, and photo-interpretation of the
castward extension of these rocks by Ogden Tweto (oral communication,
1965) indicates that they form a nearly complete bridge separating the
northern and southern parts of the batholith. These Precambrian rocks

represent a part of the roof of the batholith.

Petrography of the Twin Lakes quartz monzonite

The Twin Lakes quartz monzonite is distinguished from neighboring
intrusions by the presence of abundant orthoclase phenocrysts, some as
longy as 8 inches. The phenocrysts are set in a medium- to coarse-grained
croundmass composed of plagioclase, quartz, orthoclase, and biotite with
nminor amounts of magnetite, sphene, ilmenite, apatite, rutile, allanite,
and zircon. Sccondary minerals include sericite, calcite, chlorite,

epidote, and clinozoisite. Both quartz and plagioclase occur locally as
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subhedral to euhedral phenocrysts % to 1 inch long. Orthoclase pheno-

crvsts are not homogeneously distributed and appear to be concentrated
in a broad zone (about 2,500 feet wide) near the margins of the intru-
sion. In the central part of the area mapped, orthoclase phenocrysts
make up less than about 5 percent of the rock and their average length
is less than an inch; this is accompanied by a change, apparently grada-
tional, to a tiner grained groundmass.

Because of the generally coarse-grained nature of the rock, modal
compositions (table 1) were determined from stained slabs. The actual
orthoclase and mafic mineral content of the entire rock body is probably
slightly higher than that indicated by the average modal composition of
the slabs, because large orthoclase schlieren and mafic layers were ex-
cluded from samples selected for modal analysis.

Subhedral plagioclase is the most abundant mineral in the rock.
Albite twins are abundant, and carlsbad and pericline twins less common
in the plagioclase. Most of the plagioclase is moderately zoned (gener-
ally normal zoning, but some oscillatory zoning was observed). The
average composition of the plagioclase, as determined by universal stage
methods, is about An25 (mol. percent). Orthoclase in the groundmass is
anhedral, and the phenocrysts are subhedral to euhedral. Carlsbad twins
in the phenocrysts are common. The orthoclase is perthitic, and has a
somewhat variable 2V that averages about -65°. The quartz is anhedral
to euhedral, and has slight undulatory extinction.

Orthoclase phenocrysts, rimmed with oligoclase (about An25), are

sparsely distributed in areas surrounding the small granitic intrusions
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Table 1., Average modal composition of Twin Lakes quartz monzonite®

Mineral Volume percent
Quartz 23.9
Orthoclase 27.8
Plagioclase 43.9
Mafic minerals 4.3

(mostly biotite)

* Data obtained from stained slabs.
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near Monitor Rock (fig. 1). The process that produced these rims appears
to have been verv selective; the rims are well developed on one out of
every few thousand phenocrysts and absent on the others. This selectivi-
tv suggests that the rims are formed in some way other than by exsolution
of plagioclase from orthoclase.

The majority of plagioclase grains in the rims are aligned with
(010) parallel to cleavages in the orthoclase phenocrysts and protrude
into the orthoclase. A few patches of orthoclase that are in optical
continuity with the phenocrysts were found within some rims. A small
amount of graphic quartz is present in the rims, and a lesser amount in
the phenocrysts. Much of the groundmass surrounding the rims is very
fine grained and appears to have been recrystallized.

Because of the localized occurrence of the rims and their textures,
they are interpreted to be a replacement feature formed as solutions
percolated through the Twin Lakes quartz monzonite during intrusion of
the small granitic dikes and irregular masses. The graphic quartz inter-
crowths resulted from silica released during the replacement of ortho-
clase by plagioclase according to the following reaction (assuming that
the orthoclase is the pure potassium end member and that silica remains
constant):

.75Na + .25Ca + .25Al + .2502 + KAlSiBOB————>
\_—-\,—-——/
orthoclase

l\va.75Ca.25A11.25512.7508 + ,255102 + K
a ;\,4

Y
plagioclase rim quartz

AN
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Flow layers

In a broad zone (about 800 to 3,000 feet wide) near the northern and
northeastern margins of the intrusion, orthoclase phenocrysts are clus-
tered in lenticular masses at least as large as 15 by 50 feet; as much as
85 percent of the clusters are made up of the phenocrysts. Near the mar-
cins and in adjacent host rock, elongate phenocrysts are commonly oriented
parallel to the contents of the pods and lenses.

In the same areas, and commonly localized near margins of pheno-
cryst concentrations, are steeply inclined layers, % inch to 4 feet
thick, enriched in mafic minerals. Many mafic layers are faulted and
folded, but the fractures were healed by postdeformation crystallization.
Branching of the flow layers is very common. Truncations of layers, and
apparent truncations resulting from branching, resemble sedimentary
cross bedding. There are marked variations in grain size of mafic and
felsic constituents, both within the layers and in adjacent quartz mon-
zonite. The grain size is generally smaller in the mafic layers. The
layers are enriched in magnetite, biotite, sphene, apatite, allanite,
and locally, amphibole; all of these are minor constituents of Twin
Lakes quartz monzonite except amphibole, which is normally absent in the

quartz monzonite.

Minor intrusions within the Twin Lakes intrusion

Minor intrusions cutting the Twin Lakes quartz monzonite and the

enclosing rocks consist of rhyolite dikes, rare lamprophyric dikes, a
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rhyolite dome, and dikes and irregular masses of fine-grained granite.

Rhyolite dikes are concentrated in the northeastern part of the
batholith and commonly occupy faults. Near Smith Gulch (fig. 1), the
dikes are dominantly prophyritic with prominent phenocrysts of feldspar,
quartz, biotite, and amphibole in a green to pale tan or brown, apha-
rnitic groundmass. These rocks closely resemble larger intrusions, such
as Crested Butte in the Elk and West Elk mountains. Elsewhere, the rhyo-
lite dikes are nonporphyritic or contain a few scattered phenocrysts of
feldspar and quartz in a pale tan, aphanitic or microcrystalline ground-
mass. The dike rocks are generally severely altered, either by silicifi-
cation or by conversion of primary minerals to clay minerals, carbonates,
and other secondary minerals. |

One lamprophyric dike was found within the Twin Lakes intrusion
one-half mile west of the Twin Lakes Campground (fig. 1), and another in
Precambrian gneiss adjacent to the contact with Twin Lakes quartz monzo-
nite about one-half mile west of Galena Gulch (fig. 1). Both dikes are
very dark green, fine-grained rocks composed largely of amphibole and
secondary minerals.

The rhyolite dome between Sayers and La Plata Gulches (fig. 1) cuts
both the Twin Lakes quartz monzonite and Precambrian rocks. It is com-
posed dominantly of severely altered, dense, microcrystalline rhyolite
with scattered phenocrysts of feldspar and quartz. The central part of
the dome consists of dark vitrophyre with steeply inclined lineations
defined by elongate vesicles, and contains many inclusions of coarse

biotite granodiorite identical with the Precambrian breccia on the west
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side of the dome. Near its northern contact the rhyolite has a pro-
nounced platy parting that dips 20° toward the center of the dome.

The granitic intrusions near Monitor Rock (fig. 1) have an apha-
nitic chilled marginal zone that grades into a fine-grained granite with
scattered orthoclase phenocrysts in the interior parts of the intrusions.
The coarser grained parts of these intrusions are similar to the finer
grained parts of the Twin Lakes quartz monzonite, and both closely resem-
ble some intrusions such as Mt. Sopris and Snowmass Mountain in the Elk

and West Elk Mountain areas.
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A MISSILE IMPACT IN WATER-SATURATED SEDIMENTS

by H. J. Moore and R. V. Lugn

Introduction

A study of craters produced by the impact of missiles is being con-
ducted jointly by the U.S. Geological Survey, the Commanding General of
White Sands Missile Range, and the Ames Research Center of the National
Aeronautics and Space Administration. This report is a detailed descrip-
tion of a crater produced by missile impact in water-saturated sediments.
The U.S. Geological Survey studied and mapped the crater and prepared this
report; the Commanding General of White Sands Missile Range allowed access
to the crater and furnished ground photography, aerial photography, and
data on the kinetic energy of the missile; Ames Research Center furnished
financial assistance for field and travel expenses.

The purposes of the study are to gather information on impact craters
for the national space program and obtain scientific data on cratering.

It is hoped that the data collected will also have engineering and mili-

tary applications.

Experimental conditions

In this test, an inert missile impacted water-saturated lake beds of
gypsum with a kinetic energy of 1.57 x 1015 ergs. This kinetic energy is
less than the nominal value of 2.27 x 1015 ergs used previously (Moore and
others, 1964, p. 59). The missile impacted at an angle of 46° from the
horizontal onto a smooth level surface underlain by lake beds. This test

is the same as crater 7 previously reported (Moore and others, 1964,p. 87-90).
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Fig, l.,--Aerial photograph of crater in gypsum lake beds. Arrow :

indicates approximate trace of path of missile.
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At

The target material was very pale red-brown to pale gray gypsum with
some clay and about 20 percent water. Densities of the material ranged
from 1.2 to 1.6 g/cm3. Trenching revealed that the target material was
layered. The upper layers consisted of very pale red-brown, moist, tough
gypsum about 1.3 feet thick overlain by 0.4 feet of very pale red-brown
noncohesive gypsum sand. Beneaih these layers, the material changed to
pale gray tough gypsum saturated with water. The top of the gray layer
was coincident with the top of the water table. After completion of map-
ping, the crater filled with water to the level of the water table.

A topographic map of the crater and ejecta blanket was prepared, using
standard plane table techniques at scales of 1:48 and 1:240. These results
have been reported (Moore and others, 1964). The distribution of the sec-
ondary craters and ejecta was mapped on enlarged aerial photographs at a
scale near 1:260, and a planimetric map was prepared using photogrammetric

techniques. Some of the contacts for the thin to discontinuous ejecta

have been revised in this report (compare Moore and others, 1964, p. 89).

Morphology of crater and ejecta

An almost circular rim (diameters 30.9 and 29.9 feet) was produced,
but slopes of crater walls, the ejecta, and secondary impact distributiohs
show marked bilateral symmetry (figs. 1 and 2). The slopes of the crater
walls in the plane of the missile trajectory are not equal. The slope of
the wall facing the missile trajectory is gentler than the opposing slope
(see Moore and others, 1964, p. 87). In contrast, the crater walls at

right angles to the plane of the missile trajectory are nearly equal and
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Fig, 2,~=Map of ejecta and secondary impact craters around crater
gypsum lake bed.
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Explanation of Figure 2.

p |
| c Crater, enclosing line represents crater rim crest.
ce Continuous ejecta composed of blocks and fragments ranging
from 1.0 foot to less than 0.03 inches. Thickness varies
from 2.5 feet to about 1.0 inch.
de Discontinuous patches of ejecta up to 1.0 inch thick and
isolated fragments.
r (-]

°..’. Secondary impacts, ranging from implanted blocks to craters.

—=» Trace of projectile trajectory.
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slope downward to a point 7 feet below the original ground surface.

Ejecta thrown from the crater in the same direction of the missile
trajectory and at right angles to it are thicker and thrown farther than
ejecta thrown in opposite directions (figs. 1 and 2). Radial ridges of
thick ejecta extend more than 40 feet from the crater center in the direc-
tion of the missile flight and at right angles to this direction, but only
20 feet in the direction from which the missile came.

The distribution of thin to discontinuous ejecta and secondary impact
craters has bilateral symmetry (fig. 2). Lobes of thin to discontinuous
ejecta up to 100 feet or more extend subradially from the crater center
except in the direction from which the missile came, where a lobe extends
only 45 feet from the center of the crater. Secondary impacts are found
as much as 240 feet from the crater in the forward direction but only
50 feet in backward direction (fig. 2).

There was minor slumping of the crater walls. Slumped blocks are

shown on one of the crater walls in figure 1.

Ejecta blanket

The ejecta blanket is a splendid example of the inversion of the orig-
inal stratigraphy (fig. 3). Differences in color of the upper and lower
gypsum zones permitted clear separation of these units in the ejecta. A
photograph of inverted stratigraphy at the crater wall has appeared previ-
ously (Moore and others, 1964, p. 90, fig. 7d). Ejected debris from the
lower, pale gray zone overlies ejected debris from the upper, pale red-
brown zones to the extremities of the thick ejecta section measured (fig. 3)

and further. Such inverted stratigraphy is also typical of ejecta from
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Gypsum, loose non-cohesive, surface layer.

;5{2; Gypsum, lake beds, pale red brown zone.

§§§§§ Gypsum, lake beds, pale gray zone.

Ejecta composed of debris from red brown zone and surface layer.

Ejecta composed of debris from gray zone.

Trace of beds
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Sl

--—-—~ Original ground surface.

——~--—-Contact: long dash where approximately located; short dash where
inferred.

Fig, 3.-=Cross section of ejecta blanket.
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some craters produced by explosives and meteorite impacts (Shoemaker, 1960,
p. 422-424).

The debris in the ejecta range from blocks about 1 foot across to
very fine-grained material. The various sizes of fragments in the debris
are mixed but, in general, the sizes of the larger fragments decrease away
from the crater and the ratio of large to fine debris decreases. Similar
mixing and variations in size of ejected debris occur at Meteor Crater,
Arizona.

The transition between ejecta and "bed rock'" is well displayed just
below the crater rim on the left side of the crater (figs. 2 and 3). Here
laminae, which were originally horizontal, are tilted upward and, at the
crater edge, are overturned in an arcuate fold, the upper limb of which
grades into the ejecta. Overturning similar to this has been observed at
Meteor Crater, Arizona, and the nuclear explosive crater, Teapot ESS

(Shoemaker, 1960, p. 422-424).

Secondary impact craters

A complete series of secondary impact phenomena produced by ejected
debris was found around the crater. Near the crater, ejected blocks were
implanted by impact on the surface. These implanted blocks either more
than filled the crater or were about the same size as the crater they made
(fig. 4). Some craters were larger than the blocks or fragments that

made them (fig. 5) and either small pieces of fragments remained on the

crater floor or the fragment was smeared out over the crater floor. 1In
other secondary craters, the secondary projectile was completely or almost

completely ejected from the crater (fig. 6).

108




Fig, 4.,-=Secondary impact crater filled by
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Fig, 5.=-=Secondary impact craters, Projectile fragments partly fill

one crater and are smeared out on floor of other crater,
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This series is observed for impact of metal projectiles on metals.
Low-velocity projectiles are found in the craters they produced either
intact or somewhat deformed and fragmented (Charters, 1960, p. 129-130).
As the projectile velocity increases, the metal projectile is smeared over
the walls and floor of the crater (Charters, 1960, p. 129-130; Summers,
1959, p. 3). Smearing of the projectile over the crater walls is also
typical for temporary craters produced by falling water drops (Charters,
1960, p. 131). Further increase in velocity of the projectile results in
complete ejection of the projectile.

The velocities of the fragments that produced the secondary impact
craters were low. Ballistics calculations indicate a minimum velocity for
the fragments thrown 240 feet from the crater of about 27 meters (88 feet)

per second. High-speed photographs show that the ejecta plumes rise about

300 feet in the air, so an impact velocity of 43 meters (140 feet) per
second is indicated. The presence of secondary impact craters produced N
by projectiles with such low velocities can be partly attributed to the
fact that the upper 0.4 feet of the target material was noncohesive and
easily cratered. It is also interesting to note that crater and projec-
tile behavior similar to that found in metals can be produced by weak pro-
jectiles impacting weak materials with velocities one to two orders of
magnitude lower than those for metal-on-metal impacts.

The distribution of secondary impact craters resembles that of lunar
craters such as Copernicus (Shoemaker, 1962, p. 304-305, 325-344) and
Aristarchus. However, the bilateral symmetry of the distribution of the
secondary impact craters is more marked than that around Copernicus and

Aristarchus. Secondary impact craters are also found around some craters
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produced by nuclear explosives such as Sedan (Roberts, 1964). Strings,
clusters, loops, and irregular arrays can be found around these craters.
The distribution of secondary impact craters around primary impact
craters and some explosive craters is a function of the properties of
materials in which the crater occurs and the materials around the crater
at the surtface. The secondary impact craters around Sedan, a crater in

1.

06- scaled depth
»
/31

of burst near 1.0 ft/1lb , had large concentrations of secondary craters

kiloton nuclear explosive at a

[
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at and beyond 1 crater radius from the crater rim. Secondary impact cra-
ters around Burton-on-Trent, an explosive crater in marl, gypsum, and soil,
. . 1/3* :
with a scaled depth of burial near 0.56 ft/1b , were present in abun-
dance on the ejecta blanket up to and on the crater rim (Baldwin, 1963,
plate XIX, facing p. 122). In contrast, secondary impact craters around
nuc lear craters in basalt, such as Danny Boy with a scaled depth of burst
1/3 1 . . . .
near 1.0 ft/1b , and other chemical explosive craters in basalt, with
scaled depths of burst commensurate with those mentioned above, are con-
spicuously rare everywhere. Although the secondary impact craters in the
water-saturated gypsum sediments are found in abundance at 1 3/4 to 2 dia-
meters from the crater rim, virtually no secondary impact craters are
found around missile impact craters in dry alluvium. Thus, the properties
of the materials in which the crater occurs as well as those at the sur-

face around the crater are important controls on the distribution of

secondary impact craters.

' The scaled depth of burst or burial used here is equal to the depth
of burial of the charge in feet divided by the cube root of the weight-
equivalent of TNT of the explosive charge.
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The effective scaled depth of the crater must also be important. For
example, deeply buried explosive charges will not eject debris during cra-
tering as far as will charges with shallow burial. Similar results can be
produced by impact. TIf the target material is weak and porous,.the end
result is similar to a camouflet and is accompanied by little or no ejec-
tion of debris. For denser targets, the amount of debris ejected is sig-

nificantly larger.

Explanation of the large size of the crater

This crater, as reporced previously (Moore and others, 1964, p. 66,
87-90, crater 7), is about six times larger than a crater produced by a
missile impact with nearly the same energy and angle of impact in dry allu-
vium (Moore and others, 1964, p. 83-86, crater 6). Such a difference in
size can be accounted for by the differences in stress required for failure
of wet and dry materials at varying confining pressures.

The conditions for failure of soils can be represented by Mohr envel-
opes (see for example, Hubbert aund Rubey, 1959, p. 123-125) and modified
Griffith envelopes (Brace, 1960). The failure envelopes are diagrams (sece
figs. 7A and 7B) showing shear stresses required for failure in a unit of
rock subjected to three principal compressive stresses: (1) a maximum
(ol), (2) an intermediate (32), and (3) a minimum (53). When the differ-
ence between the maximum and minimum principal stresses are large enough,
failure occurs. This condition occurs when a circle centered on the com-

pressive stress axis and passing through the maximum and minimum principal

stress becomes tangent to or crosses the envelope (fig. 8A). lailure theu

occurs during compression by shearing along planes with angles of 45°+d/2
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measured from the maximum principal stress. Here & is the angle of internal

friction. The magnitude of the shear stress for compressive failure is:

T =T+ 0C tan ¢ (1)
where:
© is the magnitude of the shear stress along the plane of
failure,
o is the cohesion,
o 1is the stress normal to the plane of failure,

tan 4 is the coefficient of friction;

and for the modified Griffith representation:

T =2k + op (2)

where:

-1

is the magnitude of the shear stress along the plane

of failure,

2k is the cohesion, which is about twice the tensile
strength,

=~ is the stress normal to the plane of failure,

. 1is the coefficient of friction,

Failure in tension occurs when the difference in the maximum and minimum

stresses produce a circle tangent to the Griffith envelope at the com-
pressive stress axis.

The conditions for failure of water-saturated materials and dry ma-
terials differ significantly (Hubbert and Rubey, 1959, p. 139-142). The
relationship between the stress required for failure for dry, moist, wet,

and very wet materials can be expressed (Hubbert and Rubey, 1959, p. 142):
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Fig, 8A,--Modified Griffith envelopes for dry, wet, and water-

saturated materials.

Fig, 8B.-=Modified Griffith emnvelope for dry material illustrating

sequences of stress conditions during crater formation,
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=Tt + (S - p) tan &

crit o
where
Terit is the shear stress required for failure along the
plane of failure,
To is the cohesion of the material,
S is the total stress normal to the plane of failure,
p is the fluid pressure,

tan ¢ is the coefficient of internal friction.

The effective stress normal to the plane of failure, S - p, may vary from

O to S depending on the conditions Failure envelopes using total stress

(S) for the abscissa for dry, wet, and water-saturated materials are shown
in figure 8B. For dry materials p is zero with compression. For wet ma-

terials p may vary from some low value to S with compression of the mater-

ial For water-saturated materials, p may equal S upon initial compression.

The tensile stress required for failure of materials permeated with
fluids should not differ by large amounts from that of the dry material
(Jaeger, 1963) Thus, the tensile strength should be of the same order
of magnitude as the cohesion according to the modified Griffith criteria
for failure.

Although the failure envelopes used do not represent actual experi-
mental determinations of failure conditions, they are typical of failure
envelopes of many rocks and soils. These envelopes are, however, suffi-
cient to illustrate the principles involved and to illustrate how confin-
ing pressures and fluids affect target failure during crater formation.

Ample evidence justifies the use of failure envelopes in interpreting
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the results of cratering experiments. Significant quantities of fragments
in the ejecta and rubble in craters produced by missile impacts in dry allu-
vium have been compressed and sheared. These fragments have been compressed
from densities between 1.0 to 1.4 g/cm3 to 2.0 = g/cm3. These fragments
also exhibit shear fractures with striated and grooved surfaces. Thus,
shear failure at elevated confining pressures has occurred and is important
(see Moore and others, 1964, p. 62, 85-86, crater 6). Such evidence for
shearing and compression has not been found in the crater in water-satura-
ted gypsum lake beds, but a postulate that shearing failure was important
seems reasonable by analogy with craters in dry alluvium. Such evidence
would also be substantially obscured by the presence of water. Evidence

for shearing and compression has also been observed in experiments using
chemical explosives in alluvium (Allsman, 1960), and hypervelocity impact
experiments using rock targets (Moore and others, 1962).

Failure during the late stages of crater formation in rocks and soils
is tensile. Such tensile failure is indicated by blocks of uncompressed
target material bounded by sides with ragged uneven surfaces and separa-
tions along bedding planes when the target is bedded. The upward and out-
ward ejection of materials also implies some tensile failure. There is

also evidence for tensile failure in experiments using chemical explosives

in alluvium (Allsman, 1960), and hypervelocity impact experiments using
rock targets (Moore and others, 1962).

The cratering process in dry alluvium begins with penetration of the
projectile into the target material and concomitant compression of the
target material. With continued penetration, stresses develop and produce

shear fractures resulting from the compression. During the early stages
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of crater formation, target material fails by shearing during compression
at high confining pressure, but as stress waves develop and propagate out-
ward, the confining pressures decrease and stress differences required for '
failure decrease. Final stages of failure may be principally tensile or
extension when the confining pressures drop below the ambient pressures
(Moore and others, 1962; Allsman, 1960). The sequence of failure condi-
tions during crater formation for dry materials is depicted in figure 9.
For water-saturated materials, the shear stress required for failure is
nearly constant with increased confining pressure.

In summary, strength considerations suggest that water-saturated ma-
terials will fail when stress differences are small and nearly equal to
the cohesion of the material; these stress differences are constant and
independent of confining pressure. In contrast, stress differences re-
quired for failure of dry material increase with confining pressure. Thus
the average shear strength of dry material failing at varying confining
pressures may exceed the cohesion of the material by significant amounts.

The magnitude of the effective deformation strength of the water-sat-
urated gypsum during crater formation can be calculated using the Charters-
Summers theory of impact crater formation (Charters and Summers, 1959)

and correcting the energy for the obliquity of impact (Bryan, 1962):

—l—m \Y 2cos e
S _2 pp
eff 2 Vol
C
where:
S is the effective deformation strength of the target,

eff

—-;'—mpvp2 is the kinetic energy of the projectile,
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cos 8 is the correction for the angle of impact,
VolC is the volume of the crater.

Substitution of the appropriate values gives:

15
s = L1x 107 eras 0-72 . 123 x 10" dynes/em’ - 12 bars.
€ 2(4.60 x 10" cm’)

Since Sett is the compressive strength and the water-saturated gypsum be-
haves like a plastic material (fig. 8B), the shear strength is about 1/2
the effective deformation strength or 6 bars (- 90 psi). This value is
close to the cohesion of this material. The value of the cohesion com-
puted, 6 bars, is reasonable for this material and is similar to that of
a diatomaceous earth (TO = 4.7 bars) with similar properties.

The result above may be compared with similar calculations for a
crater in dry alluvium (crater 6, Moore and others, 1964, p. 85-87) for
which the kinetic energy and angle of impact were 1.38 x 1015 ergs and
46°. The volume of the crater was 7.68 x 1O6cm3. The calculations for

the crater in dry alluvium yield a value for the effective deformation

strength of 64.8 bars (- 950 psi) and, assuming an angle of internal fric-

tion of 30°, the effective shear strength is about 18.7 bars (= 274 psi).

This value is well above the cohesion of the alluvium which is of the order

of 0.4 bars (= 7 psi). On the average, the alluvium behaved like a weak
sandstone or shale. This is consistent with the presence of sheared and
compressed alluvium with densities near 2.0 g/cm3 on the crater floor and

in the ejecta from this crater.

It is not surprising that the use of the Charters-Summers theory gives
reasonable results for these craters. The use of this theory for calcula-

ting the effective deformation strength of temporary water craters produced
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by falling water drops and craters in metals and rocks yields reasonable

results (Moore and others, 1963).

Comparison with craters produced by chemical explosives

Results similar to those obtained by missile impact in wet and dry
materials are also obtained from cratering experiments using chemical ex-
plosives in wet and dry materials (Sager and others, 1960; Sachs and Swift,
1955). The missile-impact craters in water-saturated gypsum and dry allu-
vium are compared with cratering experiments using high explosives in wet
clays, sands, and dry alluvium in figure 9. The cratering data for chemi-
cal explosives have been generalized in figure 9 by use of contours repre-
senting various scaled depths of burial. The figure illustrates general
concordance of data for the impact and chemical explosive craters in wet
and dry materials.

Students of cratering by chemical explosives should explore the role
of fluid pressures on the strength of the medium since these results give
some promise of at least partly answering the problem of size differences

between craters in dry and wet materials.

Summary and conclusions

The impact of a missile on water-saturated materials produced a crater
similar to those produced by meteorite impact and chemical-nuclear explo-
sives. The asymmetrical ejecta and secondary impact patterns reflect the
missile trajectory.

A series of secondary phenomena was observed in which secondary impacts

produced implanted blocks, secondary craters containing fragments, and
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secondary impact craters not containing fragments.

The anomalously large size of the crater in water-saturated gypsum
may be partly attributed to fluid pressures that developed during crater-
ing and permitted the effective target strength to be small at elevated
confining pressures.

The sizes of craters produced by missile impacts in wet and dry ma-
terials are comparable to those produced by chemical explosives in wet
and dry materials when the kinetic energy of the missiles 1is equal to

the TNT energy equivalents of the explosives.
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THE FRAGMENTATION OF SPHERES BY PROJECTILE IMPACT

by H. J. Moore and D. E. Gault"

Introduction

In a series of nine experiments, projectiles were fired at 2-inch

[N P — - | LY 1 P | b S i T - LV Y P o e P - i
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glass with planed surfaces. 1In addition, one basalt sphere was broken by
compression.

The results of the experiments show: (1) more large fragments and
fewer small fragments are produced by high-velocity impacts with spheres
than by impacts into large rectangular blocks; (2) there is no clear cor-
relation between the size distribution of debris from the spheres and the
size distribution of meteoroids and meteorites; (3) there are similarities
as well as differences between the fragmentation produced by high-velocity
impacts on spheres and spheres broken by compression; and (4) breakage
produced by impacts with the spheres is related to the kinetic energy of

the projectile.

Experimental procedure

Basalt spheres 3/16 inch in diameter were fired at 2-inch basalt

spheres suspended in lucite boxes. The small spheres were accelerated

with a horizontal powder gun at Ames Research Center. Velocities of the
small spheres, which were determined within = 0.01 km/sec by spark photo-

graphy of the projectiles in flight, ranged between 1.37 and 1.97 km/sec.

* Ames Research Center, Moffett Field, California.
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Projectiles were mounted in four-piece nylon sabots, which guided the pro-
jectiles down the launch tube and were separated from the projectiles by
acrodynamic drag. Projectile energies ranged from 1.52 to 4.95 x 109 ergs.
Experimental procedures for the cratering experiments in large rectangular
blocks with planed surfaces (semi-infinite targets) have been described
¢lsewhere (Moore and others, 1963, p. 53). The experimental conditions

and those for selected impacts on large rectangular blocks (semi-infinite
targets) are summarized in table 1.

The basalt spheres were prepared by the Optical Laboratory at Ames
Rescarch Center. The 2-inch spheres were attached to a string with rubber
cement and suspended in a lucite box 8% x 8% x 12% inches. The lucite box
was closed except for a lucite tube 2 inches in diameter, which allowed
projectile entry. After entry of the projectile, the tube was sealed by a
spring-loaded trap door actuated by explosives to prevent loss of debris.

Basalt from Putnam Peak near Vacaville, California, was used for the
large spheres and projectiles. The density of the basalt was near 2.8 g/cm3
and, by volume, was 53 percent plagioclase, 31 percent augite, 9 percent
magnctite and ilmenite, 5 percent celadonite(?), and 2 percent apatite.

The modal grain size was near 0.08 mm, but the size ranged between 0.3 and
0.003 mn, with very few grains between 0.3-0.2 mm and 0.02-0.003 mm. The
acoustic velocity of the basalt was near 5.5 km/sec, and measured strengths
were near 2.56 x 109 dynes/cm2 for unconfined compressive strength and near
1.42 x 108 dyncs/cm2 for tensile strength. One 24.0836-g sphere of basalt
was broken by slowly compressing it between a plate and mortar; it was

brolien in water to reduce the loss of fines. During the size-distribution

analysis, 24.0810 g of fragments was recovered.
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Standard sieving screens and techniques were used in conjunction with
settling and centrifuging to obtain the size distributions of the debris.
Indicated recoveries obtained by comparing the target mass loss with mass

recovered were 99.1 to 93.9 percent for the impact experiments.

The impact of the basalt projectiles with the lower energies produced
small craters on the surfaces of the larger spheres (fig. 1) and projectiles
with the higher energies completely disrupted the spheres (fig. 2).

The small craters in the basalt spheres are similar to craters in
semi-infinite targets. Radial fractures are found around the craters, and
the crater walls are spall surfaces. 1In contrast with craters in semi-
infinite targets, crushed and sheared basalt from near the crater floors
has been ejected, and fractures concentric to the crater and normal to
the surface are well developed. The ejecta from the craters, which are
similar to those from semi-infinite targets, are of two types: (1) fine
debris ejected during the early stages of the event and derived from the
target and projectile, and (2) spall fragments ejected during late stages
of the event and derived from the periphery of the craters.

The spheres that were totally disrupted by the impact gave rise to
four types of debris: (1) fine debris ejected during the early stages
of the event and derived from the target and projectile, (2) small spall
fragments from around a transient crater, (3) large shell-like fragments
peeled from the sphere during the late stages of the event and (4) a
spherical core (fig. 2).

In contrast with the spheres totally disrupted by the projectile
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Fig. l.--Sphere with impact crater produced by 3/16-inch basalt

projectile at 1,55 km/sec.
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Fig, 2,==Core and fragments peeled from surface of a 2-inch basalt

sphere impacted by a 3/16=-inch basalt sphere at 2.48 km/sec.
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impact, debris from the basalt sphere broken by compression was composed
of: (1) fine debris, (2) medium debris with varishaped fragments, in-
cluding rods, and (3)'orange section''-shaped fragments similar to the
lunes produced by fragmentation by compression of glass spheres (Berg-

strom and Sollenberger, 1961). Part of the debris is shown in figure 3.

Craters and ejecta trom craters in semi-infinite targets of basalt
have becen described previously (Moore and others, 1962). 1In summary, the
craters are shallow cones with depth-to-diameter ratios near 1 to 5.
Radial fractures are found around the crater. The crater walls are gently
sloping hummocky spall surfaces and the floors are underlain by crushed
and shcared basalt. The ejecta are composed of: (1) fine debris de-
rived [rom the projectile and basalt and ejected during the early stages,
(2) fragments of intermediate size, and (3) large "piece of pie''-shaped

spall fragments from the peripheral parts of the craters.

Size distributions

Comparison of the size distributions (figs. 4-7) shows that: (1)
For f{ragments larger than 0.3 mm, the increase in amount of material with

increasing fragment size is larger for the fragmented spheres than for

the craters in semi-infinite targets and the increase is about equal to

that of the sphere broken in compression. (2) The slopes of the cumula-
tive size distribution curves are about the same for material finer than
0.01 mm for debris from the spheres and from craters in semi-infinite

targets, but this slope is less for the sphere broken by compression,

Inspection of the size distributions of debris produced by impact

of the spherces (figs. 4-6) reveals that the cumulative curves are not
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linear. Although the curves have a slope near 1 below 0.0l mm, they flat-
ten between 0.01 mm and 0.34 mm and then steepen again above 0.34 mm. The
reason for this is illustrated by the histograms between 0.34% and 0.043 mm
sizes, where the difference in weight percent retained between two size
intervals tends to decrease. This effect is present to a greater or lesser
degree in all size distributions for basalt, including the basalt sphere
cen by compression (fig. 6). Hovever, the change in slope in the cumu-
lative curve for the basalt sphere broken by compression is not as marked
as that for debris from the impacted spheres because the slope of the
cumulative curve below 0.01 mm is smaller for the compressed sphere debris.
The increase of the weight fraction of coarse debris between two
sizes with increasing fragment size is larger for the basalt sphere frag-
mented by compression than for the ejecta from the craters in basalt
(compare figs. 6 and 7). Similar results are obtained when the size
distribution of a glass sphere broken by compression (Bergstrom and

Sollenberger, 1961) is compared with that of the ejecta from a crater in

pyrex (fig. 8). For the fragmented sphere the cumulative curve has a
slope near 1.0 in contrast with a slope near 0.6 for the coarser sizes

of the debris from the crater in pyrex, thus illustrating the differences

in the increase of weight fractions of the coarse debris. The increase
in the weight fraction of debris between two sizes with increasing frag-
ment size is about the same for the basalt spheres fragmented by impact

and the basalt sphere fragmented by compression (fig. 6).

Comparison with meteorite distributions

There is no direct correlation of the size distribution of the debris
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from the experiments using spheres with the size distribution of meteor-
ites and meteoroids. For these experiments there is an increase in the
amount of material in each logarithmic mass-size interval as the fragment
size increases, except for a limited size range. For meteoroids and
meteorites, most workers find a constant value or a decrease in the
amount of material in each logarithmic mass-size interval (see, for ex-
ample, McCracken and others, 1963, p. 10 and 11). This result does not
imply that meteoroids and meteorites are not the result of fragmentation
by impact since an integrated size distribution may be composed of a
number of smaller size distributions with different forms. 1In addition,
we know little about scaling relationships for very large events.
Frequency distributions of meteoroids and meteorites are generally

expressed in the form:

n = kM (1)
where
n is the cumulative frequency of meteorites with masses
larger than M,
3 is a constant,
k1 is a constant.

The incremental frequency, An, for equal logarithmic intervals of M

may be obtained as follows:

An = n, - n_; (2a)
and

An = k.M.”- k.M.7; (2b)
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where

An is the incremental frequency between masses

Mi and M_, or cumulative frequencies n, and nj.
J i

When
kM® =M 7, (2¢)
21 j
then
/"v = E / - h 2d
tno= kM1 -k, ), (2d)
where 1
kZ: is the size of the logarithmic interval Mi to Mj.

The cumulative frequency of fragments in the size distributions of
debris from the spheres may be determined when the cumulative curve of
the size distribution has a constant slope and the fragments are assumed
to be geometrically similar. The size distribution may then be repre-

sented by

M=y (3a)
where
Me is the cumulative mass finer than diameter e,
b is the diameter of the largest fragment,
& 1s the slope of the size distribution curve,

or, in terms of mass

hY
)
wiQ

M o= ' (3b)
where
m is the mass of a fragment with diameter e,

m,_ is the mass of a fragment with diameter b,
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the incremental frequency, dn, is

dMe
dn = o H (4a)
e
= ——m dm (4b)
m o e e
€ m 3
b
and the cumulative frequency, n, is
: 30
n = —————————E m + ¢ (5a)
o >3

1—_1\
\3 7 ™
when the constant, c, is small and unimportant,
o
= -1
3

n = k3me (5b)

and equation 5b has the same form as equation 1. The incremental fre-

quency, An, for equal logarithmic intervals of m is

o
3 -1
bn = km (1 - k) (6)
and has the same form as equation 2d.
o
In comparing equations 1 and 2 with 5b and 6, B and 3 -1 are com-

parable. Values for 3 for meteroids and meteorites with masses between
about 10-6 g and 10 g range from -1.0 and -1.48 (see for examples,
Whipple, 1963; Kaiser, 1961; Hawkins and Upton, 1958; Millman and Burland,
1957 ; Watson 1956) and for meteoroids and dust with masses below 10-6 g
the values for = range from -1.7 to -0.51 (see for examples, Crozier,

1962 ; McCracken and others, 1961; Beard, 1959; Van de Hulst, 1947).
03

Values for 3 1 near -0.66 were obtained for the debris from the spheres
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-5
for fragments between about 10 ~ and 4.0 g. For the debris from the

- -5 = .
spheres with fragments between 10 8 and 10 ~ g the value for 3 ! was

-8 <
near -1.0; for fragments smaller than 10 g 3

was near -0.60. Thus,
the frequency distributions of the debris from the spheres do not agree

with those for meteoroids and meteorites, except for a small interval in
the smaller sizes.

Although the slopes of the frequency disiributions of the debris
from spheres do not generally agree directly with those determined for
the meteoroids and meteorites, the difference could be accounted for by
the frequency of events of various sizes; and thus the integrated distri-

bution might bear no resemblance to the distributions produced by single

events composing it.

Energy-size relationships

Comparisons between the kinetic energies of the projectile at impact
and the size distributions of the debris produced from the spheres reveal
that: (1) more fine material is produced by fhe higher energy projectiles,
and (2) the size of holes in a sieve that will pass 3 g of debris is an

inverse function of the kinetic energy of the projectile. 1In figure 9,

kinetic energies have been plotted against cumulative masses finer than

given size (x). The plot shows that the slopes of these curves decrease
with increasing fragment size, illustrating that the amount of material

broken is not a simple function of the kinetic energy of the proje&tile.

The plot of kinetic energy of the projectile and the size of holes
in a sieve that will pass 3 g of debris suggests an energy relationship

similar to that obtained in crushing experiments (Charles, 1957, and
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Holmes, 1957). Charles and Holmes found that the size moduli of crushed
products is an inverse function of the energy input of a comminution de-

vice. Figure 10 represents similar results.

Summary

The results of experimental impacts with spheres and semi-infinite
targets show differences in fragmentation. The increase in the amount
of debris with increasing fragment size is larger for the high-velocity
impacts with spheres than for cratering experiments using semi-infinite
targets. This increasc is about equal for larger size fragments and for
spheres broken by impact and by compression.

There is no direct correlation between the size distributions of the
debris from the spheres and those of meteoroids and meteorites. For the
spheres, thé absolute values of the slopes of the cumulative frequency
curves are generally less than those for meteoroids and meteorites.

Therc are parallels between fragmentation produced by high-velocity
impacts on spheres and spheres broken by compression. The size distri-
butions of the debris produced is similar in form, especially for the
coarse debris,

The amount of material broken by impacts on spheres is partly related
to the kinetic energy of the projectile. More fine debris is produced
by projectiles with higher kinetic energies than by those with lower

kinetic energics.
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MERCURY DISTRIBUTION AT THE
ODESSA METEORITE CRATERS, TEXAS
by C. H. Roach, S. P. lassiter, and T. S. Sterrett

Introduction

Five closely spaced meteorite craters have been recognized and
studied near Odessa, Texas (Evans, 1961). These cratcrs are being studied
to determine if any physical or chemical properties ot the exposed rocks
can be uniquely related to the physical environment that must have been
created by the impact of the meteoritic shower that formed the craters.
The results of preliminary thermoluminescence investigations at the cra-
ters have been previously reported (Roach and others, 1963).

Chemical investigations of the changes of chemical characteristics
of the rocks in the vicinity of the craters have been started. Both tran-
sient and postimpact alteration of chemical properties of the affected
rocks might be expected. One would expect that the high shock pressures,
elevated temperatures, and extensive rock brecciation created during the
impact event might have depleted or redistributed the more volatile con-
stituents of the rocks. One important permanent feature produced by
the impact event was the lens of brecciated rocks beneath the main Odessa
crater, a physical feature that may have prepared the rock strata for much
later chemical modification by the process of weathering because vadose

water could penetrate much deeper into the brecciated rocks than elsewhere.

Chemical investigations of rocks at the sites of known terrestrial impact

structures should contribute to a better understanding of impact structures

and should be useful in distinguishing craters and structures produced by
impacts from those produced by volcanism and hydrothermal processes.

This report compares the mercury content of subsurface rocks at the
main Odessa meteorite crater with that of stratigraphically equivalent
subsurface rocks about 1 mile from the Odessa craters.

Semiquantitative spectrographic and atomic absorption analyses for
other elements are being obtained on each of the subsurface samples, but
these chemical data are not yet complete enough for analysis and will be

described in future reports.
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Geologic setting of the Odessa craters

The geologic setting of the Odessa meteorite craters has been de-
scribed by Evans (1961, p. D-3) as follows: 'In the crater vicinity, rock
strata immediately underlying the plains surface consist of compact, cal-
careous sands and clays having an average thickness of 20 to 25 feet. A
zone of hard, platy caliche, irregular in thickness, is typically present
in the upper part of this unit. Underlying these near-surface deposits
is a section about 50 feet thick consisting of flat-lying marine limestones
and shales of Cretaceous age. These strata are in turn underlain by the
Cretaceous basement sands which have an average thickness of 125 feet.

The basement sands rest upon continental red beds of Triassic age. The
main crater penetrates the upper formations and about 30 feet into the
Cretaceous basement sands. Crater no. 2 and the smaller craters are de-

' The Cretaceous

veloped entirely in the near-surface sands and clays.'
basement sands have calcareous cement.
The main crater has an average rim diameter of 550 feet and a maxi-

mum depth of about 100 feet. Crater no. 2 is about 70 feet in diameter

and 17 feet in depth. Three small, poorly preserved craters have depths
from 6 to 10 feet. "The rim of the main crater is formed by strongly
folded, distorted and thrust-faulted strata. The oldest strata involved
in the overthrust rim folds have been uplifted as much as 50 feet from
their original position, which is equivalent to one-half the depth of the
crater. In crater no. 2, however, the rim exhibits only simple and com-
paratively slight upfolding which involved only the near-surface soil and
caliche units. . . .In the preserved parts of the smaller crater rims no

displacement of bedrock could be detected.' (Evans, 1961, p. D-8.)

Sampling

During the period July - September, 1964, two vertical holes were
core-drilled near the Odessa meteorite craters to obtain subsurface sam-
ples of the rock strata most likely to have been affected by the impact-
ing meteorites that formed the craters. These core samples are being used
to study the physical and chemical properties of rocks that occur at depth

below the preimpact land surface. One core hole drilled about 5 feet
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from the northeast crater lip of the main Odessa crater represents the
upturned and deformed rocks that were affected greatly by the physical
environment created by the impacting meteorites. The second core hole

was drilled about 1.1 miles west of the site of the main Odessa crater

and is herein used as a control hole to represent the same rock strata in
their preimpact or unaffected condition (fig. 1). The depths at which sam-

ples were selected for mercury measurements are shown in tables 1 and 2.

Mercury measurements

All measurements of mercury concentration were made with a portable
type S-1 mercury detector manufactured by the Lemaire Instruments Company,
Reno, Nevada. With this detector, the amount of mercury volatilized from
a heated rock sample is measured by atomic absorption. One gram of finely
disaggregated rock sample (less than 200 mesh) is placed in a small metal
sample bulb. The sample bulb is then attached with an airtight connection
to a piston-type -intake hand pump. The bottom part of the sample bulb is
then placed directly in the flame from a small butane torch and is heated
for 1 minute. During heating, the piston is slowly moved outward so that
volatile materials liberated during heating of the sample will be contin-
uously drawn into the chamber of the intake pump. After heating and col-
lection of the volatilized materials has been completed, the hand pump and
sample bulb are separated, and the outlet to the hand pump is then inserted
into the airtight connection to the atomic absorption chamber. Then the
voltmeter on the absorption unit is zeroed and the collected vapor phase
is injected into the absorption chamber by a forward movement of the
plunger of the hand pump. The absorption chamber has a photomultiplier
mounted on onc¢ side and, on the other side, a mercury lamp to produce the
ultraviolet radiation required for the absorption measurement of mercury.
As the volatilized materials traverse the part of the chamber between the
photomultiplicr and the light source, any substances that absorb ultra-
violet radiation will cause a deflection of the voltage output of the
photomultiplier tube. This voltage deviation is then amplified electron-

ically, giving a voltage reading which is proportional to the concentra-

tion of absorbing material present in the absorption chamber.
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Since the Lemaire mercury detector does not contain a monochromator,
mercury is not selectively determined within the absorption chamber. How-
ever, only two substances commonly present in rocks of the type herein
studied will absorb in the ultraviolet spectral region of the source lamp,
and therefore might be falsely interpreted as mercury present in the sam-
ple. Smoke (and other particulate matter) generated from heating organic
matter and sulfur dioxide from heated sulfide minerals can both absorb in
parte of the spectrum of mercurv and might therefore be interpreted as
representing mercury in the sample being measured. Smoke and other partic-
ulate matter generated from heated organic matter was eliminated from the
svstem by means of a special filter (provided by the Lemaire Instruments
Company) that was placed in the intake part of the hand pump and did not
therefore occur in the gaseous sample that is injected into the absorption
chamber. Sulfur dioxide was eliminated from the system by placing a thin
layer of finely ground metallic iron on top of each disaggregated rock
sample before it was heated. The finely ground metallic iron reacts with
the sulfur dioxide generated from the rock sample during heating and pre-
vents the sulfur dioxide from entering the chamber in the intake pump.
These precautions were taken to raise the probability that none of the
samples would produce atomic absorption in the chamber unless mercury
vapor was present.

A set of mercury standards was prepared by adding known quantities
of pure cinnabar to Ottawa sand that contains no detectable mercury. These
standards were then used to develop a curve expressing the relation be-
tween voltage produced by the atomic absorption chamber and the known mer-
cury content of the standard samples. These standards were also checked
with a more elaborate and more precise mercury detection apparatus designed
by the Geological Survey (Vaughn and McCarthy, 1964). Voltage readings
produced by the absorption of ultraviolet radiation by the mercury vapor
from each sample were recorded, and the amount of mercury in the original
sample was obtained from the calibration graph. Mercury was measured on
3 splits of each sample analyzed, and the 3 measurements were averaged for
the comparative studies.

The reproducibility of measurements with the Lemaire mercury detector
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is good and the limit of detection for this field instrument has been de-
termined to be about 10 parts per billion if careful precedures are con-

ducted by only one operator.

Mercury content of subsurface rocks at Odessa craters

The mercury analyses show that many of the subsurface rock samples
to a depth of about 130 feet below the main Odessa meteorite crater have
significantly lower concentrations of mercury than do stratigraphically
equivalent samples collected 1.1 miles west of the main Odessa crater
(tables 1 and 2 and fig. 1). Beneath the northeast lip of the main Odessa
crater, only four samples above a depth of about 128 feet contained greater
than the detection limit of 10 parts per billion mercury (table 2). Two
of these four samples were taken from the near-surface caliche, within 3
feet of the ground surface, and may have contained mercury added during
recent time either by rainfall or by man during periods when various flu-
ids and constructional materials were disposed of along this portion of
the crater lip, as reported by Glen L. Evans (personal communication,
1962). For these reasons, the upper 5 feet of the caliche at the main
crater is not considered to be reliable material to analyze for mercury
content. The chemical analyses show that above a depth of about 130 feet
each stratigraphic unit sampled contains significantly greater concentra-
tions of mercury at 1.1 miles west of the crater than equivalent units
sampled at the edge of the main Odessa crater. Below a depth of about 130
feet, samples of Cretaceous basement sands and the underlying Triassic
mudstone at both locations consistently contain detectable concentrations
of mercury in about the same order of magnitude, although the rocks at
this depth have a slightly higher average mercury content beneath the main
crater. More data are needed to determine if these deeper horizons actu-
ally have significantly more mercury beneath the main crater than at the
more distant location. It is interesting to note that the depth of 133
feet, above which almost all samples at the main crater have either unde-
tectable concentrations of mercury or less than 10 parts per billion, is
only about 30 to 40 feet stratigraphically below the‘point in the Creta-

ceous basement sands that corresponds to the maximum depth reported for
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&

the center of the main crater (Evans, 1961, p. D-3). Aiso, it is worth
noting that drill core from OC-2 drill hole was intensely to moderately
fractured to a depth of about 60 feet, and moderately to slightly fractured
to a depth of about 100 feet.

Preliminary interpretation of mercury data

hose samples collected from the surface to a depth of

Except for t
about 130 feet at the main crater, the mercury content of ail subsurface
rock samples is within the range of the values to be expected for sedi-
mentary rock of the type occurring at the Odessa craters. The upper part
of the section of rocks at the main crater appears to be unusually low in
mercury content. Rocks deeper than 130 feet below the main crater might
have slightly higher than average mercury content, but additional data are
needed before this can be determined. If the assumption is made that the
subsurface rock at the two sites studied had about the same content of
mercury before the impact event, an explanation is needed for the apparent
depletion of mercury content in the rocks from the surface to a depth of
about 130 feet beneath the main Odessa crater and possible increased con-
centration below. At this time, two possible theories can be offered to
explain the depletion of mercury in rocks beneath the main crater: (1)
mercury indigenous to the rocks could have been depleted or mobilized as
a direct result of the high shock pressures and elevated temperatures that
must have accompanied the impact of the meteoritic shower and (2) the mer-
cury content of the brecciated rock formed by the impact event might have
been depleted, or redistributed, by postimpact leaching by vadose waters as
they moved downward through the lens of brecciated rock.

The impact event at the Odessa craters probably was accompanied by
pressure and temperature gradients that could have mobilized and trans-
ferred some of the indigenous mercury. The degree to which mercury might
be transferred by an impact event would of course be dependent on projec-
tile properties such as mass, velocity, and composition, as well as target
properties such as water content, porosity, and composition. Previous

work by the authors has shown that the mercury content of subsurface rocks

adjacent to underground nuclear explosions may have been significantly
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depleted above the detonation and for a short distance below it. The
physical environment created by impacting meteorites has been previously
stated to be responsible for greatly reducing the radiogenic argon content
of granitic rocks at the Ries crater (Signer, 1964). Although none of
these data are conclusive, they do suggest that strong shock and elevated

temperatures accompanying strong shock events can volatilize mercury in-

digenous to the shocked rocks, and that the net result of the shock event
is a depletion or redistribution of mercury content in the affected rocks.
Very little is known about the geochemical behavior of mercury, par-
ticularly in an oxidizing environment such as has existed at the site of
the Odessa craters since their formation. Rain water is known to contain
a small amount of mercury and may represent a possible source of mercury
added to the near-surface (within 5 feet of the ground surface) rocks at
the main Odessa crater since its formation. Present chemical data is in-
sufficient to evaluate the possibility that mercury in the rocks at the
main Odessa crater has been strongly leached to a depth of about 130 feet.
Chemical analyses by spectrography and atomic absorption are being made
for each sample listed in tables 1 and 2, and when these data are available
it may be possible to determine whether mercury has been redistributed in
thg¢ subsurface rocks at the main crater by leaching of downward-percolating

meteoric water.

Conclusions

The depletion of mercury content of rocks beneath the main Odessa
crater may have resulted from processes caused by the impact event that
formed the craters. On the other hand, postimpact leaching by meteoric
waters cannot be omitted as a possible cause of the depletion. Additional
chemical studies now under way may help to resolve this problem and also
to determine if only the mercury content of the samples is being measured
by the Lemaire instrument. Regardless of the cause, the variations in
mercury content of the rocks beneath the main Odessa crater may provide a
useful technique for studying other terrestrial structures whose origin is
now uncertain. Many complex structures of volcanic and hydrothermal origin

should contain rocks that may be significantly enriched in mercury and
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therefore contrast greatly with rocks found at impact structures.
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COLLECTION OF METEORITE SPECIMENS AT METEOR CRATER, ARIZONA
by D. J. Milton and A. J. Swartz

Considerable variation is known among specimens of the Canyon Diablo
irons, fragments of the meteorite that formed Meteor Crater. Some of the
differences seem to correlate with the find site of the fragments. For
example, it has been stated that diamonds occur only in irons on the rim
of the crater and not in those farther out on the plains (Nininger, 1956;
Anders, 1965). Systematic studies, however, have been hindered by uncer-
tainty as to the find site of most of the specimens.

As part of the comprehensive study of Meteor Crater, irons were sys-
tematically searched for with U. S. Army AN/PRS-3 mine detectors during
the summer of 1965. Search grids were laid out along radial lines from
the crater in each of the cardinal directions. About 90 specimens of
meteoritic iron were recovered. Most weighed about 100 g, but some larger
ones, up to 15 kg, were found. In addition to the irons, oxidized meteor-
itic material was collected from the ground surface. All specimens were
accurately located with respect to surveyed points.

Preparation of the specimens for study has begun with extraction of
the carbon minerals from oxidized material by digestion in acid and with
the sawing of iron specimens for polished sections.

We are grateful to Meteor Crater Enterprises, Inc., for allowing us
to make the collection. We also thank George Morrison of the Department of
Chemistry, Arizona State College, for providing laboratory space and
Carleton Moore, curator of the Nininger Meteorite Collection, Arizona

State University, for providing facilities for sawing irons.
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